精英家教网 > 高中数学 > 题目详情
5.在△ABC中,∠ABC=90°,BC的中点为D,已知sin∠CAD=$\frac{1}{3}$,求∠CAB的正弦值.

分析 分别设出AB,.BD,则AD,AC可表示出来,利用余弦定理建立等式求得AB,则∠CAB的正弦值可得.

解答 解:
设AB=x,BD=CD=1,则AD=$\sqrt{1+{x}^{2}}$,AC=$\sqrt{{x}^{2}+4}$
则在△ACD中,cos∠CAD=$\frac{A{D}^{2}+A{C}^{2}-C{D}^{2}}{2•AD•AC}$=$\frac{2{x}^{2}+4}{2\sqrt{{x}^{4}+5{x}^{2}+4}}$=$\frac{2\sqrt{2}}{3}$,
求得x=$\sqrt{2}$,
∴sin∠CAB=$\frac{2}{\sqrt{{x}^{2}+4}}$=$\frac{\sqrt{6}}{3}$

点评 本题主要考查了余弦定理的运用,解三角形问题的应用.解题的关键是找到各边的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=ex-ax,其中e是自然对数的底数,a∈R.
(1)若函数y=f(x)的图象在x=ln2处的切线l的倾斜角为0,求切线l的方程;
(2)记函数y=f(x)图象为曲线C,设点A(x1,f(x1)),B(x2,f(x2))(x1<x2)是曲线C上不同的两定点,点M为线段AB的中点,过点M作x轴的垂线交曲线C于点N,记直线AB的斜率为k.若x1=-x2,试问:曲线C在点N处的切线是否平行于直线AB?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f($\sqrt{x}$+1)=x+2$\sqrt{x}$,求f(x),f(x+1),f(x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$=(4sin2θ-3sinθ,1),$\overrightarrow{b}$=(1,-λ),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则λ的取值范围是$[-\frac{9}{16},7]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知x1,x2是方程x2-(a-2)x+(a2+3a+5)=0(a为实数)的两个实根,求x12+x22的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已经平行四边形ABCD中,AB=4,E为AB的中点,且△ADE是等边三角形,沿DE把△ADE折起至A1DE的位置,使得A1C=4.(1)F是线段A1C的中点,求证:BF∥平面A1DE;
(2)求证:A1D⊥CE;
(3)求点A1到平面BCDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.计算:(x+1)(x-1)(x2-x+1)(x2+x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,正方体ABCD-A1B1C1D1的棱长为1,G,H分别为DA1,CA1中点
(1)求证:GH∥平面CDD1C1
(2)求证:BC1⊥平面A1CD
(3)求三棱锥A-BCG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.${∫}_{-\frac{π}{3}}^{\frac{π}{3}}$cosxdx=(  )
A.$\frac{1}{2}$B.1C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案