分析 (1)求出函数的导数,求出b的值,解关于导函数的不等式,求出函数的单调区间,从而求出x=1时函数取极大值,求出a的范围即可;
(2)求出f(x)的导数,求出m的范围,根据函数的单调性证明即可.
解答 解:(1)∵f′(x)=$\frac{({ae}^{x}+\frac{b}{x})x-({ae}^{x}+blnx)}{{x}^{2}}$,∴f′(1)=b=0,
∴f′(x)=$\frac{{ae}^{x}(x-1)}{{x}^{2}}$,
a>0时,由f′(x)>0,解得:x>1,由f′(x)<0,解得:0<x<1,
故f(x)只有极小值,不合题意;
a<0时,由f′(x)>0,解得:0<x<1,由f′(x)<0,解得:x>1,
故f(x)在x=1处取得极大值,
故a的范围是(-∞,0);
(2)a=b=1时,f(x)=$\frac{{e}^{x}+lnx}{x}$,f′(x)=$\frac{{e}^{x}(x-1)+1-lnx}{{x}^{2}}$,
设g(x)=ex(x-1)+1-lnx,则g′(x)=x(ex-$\frac{1}{{x}^{2}}$),
设g′(m)=0,∵e${\;}^{\frac{3}{4}}$>$\frac{16}{9}$,e${\;}^{\frac{2}{3}}$<$\frac{9}{4}$,
且y=ex-$\frac{1}{{x}^{2}}$在x∈(0,+∞)递增,
∴$\frac{2}{3}$<m<$\frac{3}{4}$,
不难得到g(x)≥g(m),
∵em=$\frac{1}{{m}^{2}}$,∴m=-2lnm,
∴g(m)=$\frac{{m}^{3}+{2m}^{2}+2m-2}{{2m}^{2}}$,
∵(m3+2m2+2m-2)′=3m2+4m+2>0恒成立,
∴φ(m)=m3+2m2+2m-2递增,
∴φ(m)>φ($\frac{2}{3}$)=$\frac{14}{27}$>0,∴g(m)>0,g(x)>0,
故f′(x)>0,f(x)在(0,+∞)递增.
点评 本题考查了函数的单调性、极值、最值问题,考查导数的应用以及转化思想,是一道综合题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{10}$=1 | B. | $\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{15}$=1 | C. | $\frac{{x}^{2}}{15}$+$\frac{{y}^{2}}{10}$=1 | D. | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{10}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -a>-b | B. | a+c>b+c | C. | $\frac{1}{a}>\frac{1}{b}$ | D. | (-a)2>(-b)2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com