精英家教网 > 高中数学 > 题目详情
(1)已知
AB
=(1,-2),
BC
=(2,1),
CD
=(6,-2),求证A、C、D三点共线.
(2)当|
a
|=1,|
b
|=2,
a
b
夹角60°,试确定实数k的值使k
a
-
b
a
+
b
垂直.
考点:数量积判断两个平面向量的垂直关系,平行向量与共线向量,数量积表示两个向量的夹角
专题:平面向量及应用
分析:(1)由题意易得向量
AC
的坐标,可得
CD
AC
,可得结论;(2)由向量垂直可得向量的数量积为0,可得k的方程,解方程可得.
解答: 解:(1)证明∵
AB
=(1,-2),
BC
=(2,1),
CD
=(6,-2),
AC
=
AB
+
BC
=(1,-2)+(2,1)=(3,-1),
CD
=2
AC
,∴
CD
AC

∴A、C、D三点共线;
(2)∵|
a
|=1,|
b
|=2,
a
b
夹角60°,
∴由(k
a
-
b
)•(
a
+
b
)=k
a
2
+(k-1)
a
b
-
b
2
=0
可得k+(k-1)×1×2×
1
2
-4=0,
解得k=
5
2
点评:本题考查平面向量的数量积,涉及向量的平行关系和垂直关系,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数y=x2-3x+2的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(m2-m-1)x m2+m-3是幂函数,且x∈(0,+∞)时,f(x)是增函数,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分二层)从该年级的学生中共抽查100名学生同学,如果以身高达165cm作为达标的标准,对抽取的100名学生,得到以下列联表:
体育锻炼与身高达标2×2列联表
身高达标身高不达标总计
积极参加体育锻炼40
不积极参加体育锻炼15
总计100
(1)完成上表;
(2)能否在犯错误的概率不超过0.05的前提下认为体育锻炼与身高达标有关系(值精确到)?
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,参考数据:
P(K2>k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:x(x-1)<x(2x-3)+2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的方程为x2=2py,设点M(x0,1)(x0>0)在抛物线C上,且它到抛物线C的准线距离为
5
4

(1)求抛物线C的方程;
(2)过点M作倾斜角互补的两条直线分别交抛物线C于A(x1,y1),B(x2,y2)两点(M、A、B三点互不相同),求当∠MAB为钝角时,点A的纵坐标y1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,若a1=1,an+1=2an-3(n≥1),则该数列的通项an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i为虚数单位,复数z满足z•(1+i)=2i,则z=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x+
4
x+2
(x>-2)的最小值是
 
,此时x=
 

查看答案和解析>>

同步练习册答案