精英家教网 > 高中数学 > 题目详情
已知正项数列{an},其前n项和Sn满足6Sn+3an+2,且a1a2a6是等比数列{bn}的前三项.
(1)求数列{an}与{bn}的通项公式;
(2)记Tna1bna2bn-1+…+anb1n∈N*,证明:3Tn+1=2bn+1an+1(n∈N*).
(1)an=3n-2,bn=4n-1(2)见解析
(1)∵6Sn+3an+2,①
∴6a1+3a1+2,解得a1=1或a1=2.
又6Sn-1+3an-1+2(n≥2), ②
由①-②,得6an=()+3(anan-1),即(anan-1)(anan-1-3)=0.
anan-1>0,∴anan-1=3(n≥2).
a1=2时,a2=5,a6=17,此时a1a2a6不成等比数列,∴a1≠2;
a1=1时,a2=4,a6=16,此时a1a2a6成等比数列,∴a1=1.
∴{an}是以1为首项3为公差的等差数列,{bn}是以1为首项4为公比的等比数列.
an=3n-2,bn=4n-1.
(2)由(1)得
Tn=1×4n-1+4×4n-2+…+(3n-5)×41+(3n-2)×40,  ③
∴4Tn=1×4n+4×4n-1+7×4n-2+…+(3n-2)×41.  ④
由④-③,得
3Tn=4n+3×(4n-1+4n-2+…+41)-(3n-2)=4n+12×-(3n-2)
=2×4n-(3n+1)-1=2bn+1an+1-1,
∴3Tn+1=2bn+1an+1(n∈N*).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的相邻两项anan+1是关于x的方程x2-2nxbn=0的两根,且a1=1.
(1)求证:数列是等比数列;
(2)求数列{an}的前n项和Sn
(3)设函数f(n)=bnt·Sn(n∈N*),若f(n)>0对任意的n∈N*都成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

公比为的等比数列的各项都是正数,且,则(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和为Sn,且有a1=2,Sn=2an-2.
(1)求数列an的通项公式;
(2)若bn=nan,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列{an}满足3an+1+an=0,a2=-,则{an}的前10项和等于(  )
A.-6(1-3-10)B.(1-310)
C.3(1-3-10)D.3(1+3-10)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等比数列{an}的所有项均为正数,首项a1=1,且a4,3a3a5成等差数列.
(1)求数列{an}的通项公式;
(2)数列{an+1λan}的前n项和为Sn,若Sn=2n-1(n∈N*),求实数λ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设等比数列{an}的各项均为正数,公比为q,前n项和为Sn.若对?n∈N*,有S2n<3Sn,则q的取值范围是(  )
A.(0,1]B.(0,2)C.[1,2)D.(0,)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和Sn=n2+1,数列{bn}是首项为1,公比为b的等比数列.
(1)求数列{an}的通项公式;
(2)求数列{anbn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在等比数列{an}中,a3=6,前3项和S3=18,则公比q的值为________.

查看答案和解析>>

同步练习册答案