精英家教网 > 高中数学 > 题目详情
20.已知实数x,y满足$\left\{\begin{array}{l}{2x-y≥0}\\{y-x≥0}\\{2x+2y-3≥0}\end{array}\right.$,则$\frac{y+1}{x}$的取值范围是[$\frac{7}{3}$,+∞).

分析 由约束条件作出可行域,利用$\frac{y+1}{x}$的几何意义,即可行域内的动点与定点(0,-1)连线的斜率得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{2x-y≥0}\\{y-x≥0}\\{2x+2y-3≥0}\end{array}\right.$作出可行域如图,
由$\left\{\begin{array}{l}{y-x=0}\\{2x+2y-3=0}\end{array}\right.$可得A($\frac{3}{4}$,$\frac{3}{4}$),
则$\frac{y+1}{x}$的几何意义是可行域内的点与P(0,-1)连线的斜率,可知:KPA=$\frac{\frac{3}{4}+1}{\frac{3}{4}}$=$\frac{7}{3}$.
则$\frac{y+1}{x}$的取值范围是[$\frac{7}{3}$,+∞).
故答案为:[$\frac{7}{3}$,+∞).

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设集合A={x|-3<x<4},集合B={x|x<1},则A∪B等于(  )
A.(-3,1)B.[-4,1)C.(-∞,4)D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.四棱锥P-ABCD中,PD⊥底面ABCD,AD∥BC,AC⊥DB,∠CAD=60°,AD=2,PD=1.
(Ⅰ)证明:AC⊥BP;
(Ⅱ)求二面角C-AP-D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在三角形ABC中,若sin2Ccos2B+$\frac{1}{2}$sin2Csin2B=0,且cos2C+cosC=0,则△ABC是(  )
A.直角非等腰三角形B.等腰非等边三角形
C.等腰直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.一个几何体的三视图如图所示,那么这个几何体的表面积是(  )
A.20+2$\sqrt{5}$B.20+2$\sqrt{3}$C.16+2$\sqrt{5}$D.16+2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2sin2x+sinxcosx+cos2x(x∈R),求函数f(x)的最小正周期及递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若$\frac{d}{dx}$${∫}_{0}^{{e}^{-x}}$f(t)dt=ex,则f(x)=(  )
A.-x-2B.-x2C.e-2xD.-e2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数y=$\frac{{2x}^{2}+x+1}{{x}^{2}+x+1}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.化简
(1)(sinx+cosx)2=1+sin2x;sinxcosxcos2x=$\frac{1}{4}sin4x$;sin4x-cos4x=-cos2x;
(2)$\frac{1}{sin10°}$-$\frac{\sqrt{3}}{cos10°}$;sin40°(tan10°-$\sqrt{3}$);$\frac{tan20°+tan40°+tan120°}{tan20°tan40°}$.

查看答案和解析>>

同步练习册答案