精英家教网 > 高中数学 > 题目详情
设P为等边△ABC所在平面内的一点,满足
CP
=
CB
+2
CA
,若AB=1,则
PA
PB
的值为
 
考点:平面向量数量积的运算
专题:计算题
分析:利用向量加法的几何意义和运算法则,转化为
BC
AC
的运算.
解答: 解:如图,四边形CBPD为平行四边形.
PA
PB
=(
PD
+
DA
PB
=(
BC
+
AC
)•2
AC
=2
BC
AC
+2
AC
2=2×1×1×cos60°+2×12=3,
故答案为:3
点评:本题考查向量数量积的运算,结合运算法则进行转化是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某城市随机抽取一个月(30天)的空气质量指数API监测数据,统计结果如下:
API[0,50](50,100](100,150](150,200](200,250](250,300](300,350]
空气质量轻微污染轻度污染中度污染中度重污染重度污染
天数2459433
(Ⅰ)根据以上数据估计该城市这30天空气质量指数API的平均值;
(Ⅱ)若该城市某企业因空气污染每天造成的经济损失S(单位:元)与空气质量指数API(记为w)的关系式为:
S=
0,0≤w≤100
4w-400,100<w≤300
2000,300<w≤350

若在本月30天中随机抽取一天,试估计该天经济损失S大于200元且不超过600元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l与直线x+y=1=0垂直,其纵截距b=-
3
,椭圆C的两个焦点为F1(-1,0),F2(1,0),且与直线l相切.
(1)求直线l,椭圆C的方程;
(2)过F1作两条互相垂直的直线l1、l2,与椭圆分别交于P、Q及M、N,求四边形PMQN面积的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)为定义在R上的偶函数,当0≤x≤2时,y=x;当x>2时,y=f(x)的图象是顶点为P(3,4)且过点A(2,2)的抛物线的一部分.
(1)求函数f(x)在(-∞,-2)上的解析式;
(2)在图中的直角坐标系中画出函数f(x)的图象;
(3)写出函数f(x)的值域和单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线a∥平面α,平面α∥平面β,则a与β的位置关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对实数a,b定义运算“?”:a?b=
a(b+1),a≥b
b(a+1),a<b
,则(2tan
4
)?cos
3
+lg100?(
1
3
-1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=1,an+an+1=(
1
5
n(n∈N*),Sn=a1+5a2+52a3+…+5n-1an,则
6Sn-5nan
n
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2-2,0≤x≤2
2x,  x>2
,若f(x0)≥1,则x0的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x2+x(x≥0)
x+x2(x<0)
,对任意的x∈[0,1]恒有f(x+a)≤f(x)成立,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案