分析 设P(cosα,sinα),α∈[0,π],则$\overrightarrow{BA}$=(1,1),$\overrightarrow{BP}$=(cosα,sinα+1),由此能求出$\overrightarrow{BP}$•$\overrightarrow{BA}$的取值范围.
解答 解:∵在平面直角坐标系中,A(1,0),B(0,-1),
P是曲线y=$\sqrt{1-{x}^{2}}$上一个动点,
∴设P(cosα,sinα),α∈[0,π],
∴$\overrightarrow{BA}$=(1,1),$\overrightarrow{BP}$=(cosα,sinα+1),
$\overrightarrow{BP}•\overrightarrow{BA}$=cosα+sinα+1=$\sqrt{2}sin(α+\frac{π}{4})+1$,
∴$\overrightarrow{BP}$•$\overrightarrow{BA}$的取值范围是[0,1+$\sqrt{2}$].
故答案为:[0,1+$\sqrt{2}$].
点评 本题考查向量的数量积的取值范围的求法,是中档题,解题时要认真审题,注意平面向量数量积的性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 18个 | B. | 16个 | C. | 14个 | D. | 12个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4{C}_{13}^{2}}{{C}_{52}^{2}}$ | B. | $\frac{{C}_{13}^{2}}{{C}_{52}^{2}}$ | C. | $\frac{2}{52}$ | D. | $\frac{13}{52}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{1}{2}$) | B. | (-∞,$\frac{1}{2}$)∪($\frac{3}{2}$,+∞) | C. | ($\frac{1}{2}$,$\frac{3}{2}$) | D. | ($\frac{3}{2}$,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com