精英家教网 > 高中数学 > 题目详情
在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点M的极坐标为(4
2
1
4
π),曲线C的参数方程为
x=1+3cosα
y=3sinα
(α为参数),则过点M与曲线C相切的直线方程为
 
考点:参数方程化成普通方程
专题:坐标系和参数方程
分析:把参数方程化为直角坐标方程,求出圆心和半径,分切线的斜率不存在、存在两种情况,分别求得切线的方程.
解答: 解:根据点M的极坐标为(4
2
1
4
π),可得点M的直角坐标为(4,4),
把曲线C的参数方程为
x=1+3cosα
y=3sinα
(α为参数),消去参数化为直角坐标方程为 (x-1)2+y2=9,
表示以(1,0)为圆心、半径等于3的圆.
当切线的斜率不存在时,切线的方程为x=4,
当切线的斜率存在时,设切线的方程为y-4=k(x-4),即 kx-y+4-4k=0,
由圆心到切线的距离等于半径,可得 6k2-24k-13=0,求得k=
7
24

故切线的方程为 7x-24y+68=0,
综上可得,圆的切线方程为:7x-24y+68=0和x=4,
故答案为:7x-24y+68=0和x=4.
点评:本题主要考查把参数方程化为直角坐标方程的方法,直线和圆相切的性质,点到直线的距离公式的应用,体现了分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinθ=-
12
13
,θ是第三象限角,求cos(
π
6
+θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知圆中两条弦AB与CD相交与F,且DF=CF=
2
,E是AB延长线上一点,AF:FB:BE=4:2:1,若CE与圆相切,则线段CE的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知l线的方程为:(2m+1)x+(m+1)y-7m-4=0(m∈R),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ2-20=2ρcosθ+4ρsinθ,则直线l被圆C截得的线段的最短长度为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知球O是正方体ABCD-A1B1C1D1的内切球,且平面ACD1截球O的截面面积为
π
6
,则正方形外接球的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若对任意x∈A,y∈B,(A、B⊆R)有唯一确定的f(x,y)与之对应,称f(x,y)为关于x、y的二元函数,现定义满足下列性质的二元函数f(x,y)为关于实数x、y的“广义距离”:
(1)非负性:f(x,y)≥0,当且仅当x=y=0时取等号;
(2)对称性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)对任意的实数Z均成立;
现在给出四个二元函数:
①f(x,y)=x2+y2
②f(x,y)=(x-y)2
③f(x,y)=
x2+y2-xy

④f(x,y)=sin(x-y);
能够称为关于x、y的“广义距离”的函数的所有序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
16
+
y2
9
=1及直线l:(2m+1)x+(m+1)y=7m+4(m∈R)的位置关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱锥O-ABC的侧棱OA,OB,OC两两垂直且长度分别为2cm,3cm,1cm,则该三棱锥的体积是
 
cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线x2+
y2
m
=1的一条渐近线的倾斜角α∈(0,
π
3
),则m的取值范围是(  )
A、(-3,0)
B、(-
3
,0)
C、(0,3)
D、(-
3
3
,0)

查看答案和解析>>

同步练习册答案