| A. | $\sqrt{5}$-1 | B. | $\sqrt{3}$ | C. | $\sqrt{3}$+1 | D. | $\sqrt{5}$+1 |
分析 利用已知条件可得P是Q,F2的中点,$\overrightarrow{Q{F}_{1}}$⊥$\overrightarrow{Q{F}_{2}}$,由条件求出Q坐标,由中点坐标公式,求出P的坐标,代入双曲线方程,即可求解双曲线的离心率.
解答 解:双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1(-c,0),F2(c,0),
P为双曲线C上一点,Q为双曲线C渐近线上一点,P、Q均位于第一象限,
且$\widehat{QP}$=$\widehat{P{F}_{2}}$,$\widehat{Q{F}_{1}}$•$\widehat{Q{F}_{2}}$=0,
可知P是Q,F2的中点,$\overrightarrow{Q{F}_{1}}$⊥$\overrightarrow{Q{F}_{2}}$,
Q在直线bx-ay=0上,并且|OQ|=c,则Q(a,b),
则P($\frac{a+c}{2}$,$\frac{b}{2}$),
代入双曲线方程可得:$\frac{(a+c)^{2}}{4{a}^{2}}$-$\frac{{b}^{2}}{4{b}^{2}}$=1,
即有$\frac{a+c}{a}$=$\sqrt{5}$,
即1+e=$\sqrt{5}$.
可得e=$\sqrt{5}$-1.
故选:A.
点评 本题考查双曲线的简单性质的应用,离心率的求法,考查转化思想以及计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-5,7) | B. | [-3,7) | C. | (-3,7) | D. | (-5,7) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | -9 | C. | 22 | D. | 21 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈N*,2x>x2 | B. | ?x∈N*,2x≤x2 | C. | ?x∈N*,2x≤x2 | D. | ?x∈N*,2x<x2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com