精英家教网 > 高中数学 > 题目详情
10.在区间[0,6]上随机取一实数x,则该实数x满足不等式1≤log2x≤2的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 根据几何概型的公式,利用事件对应区间长度比求概率即可.

解答 解:解不等式1≤log2x≤2,可得2≤x≤4,
∴在区间[0,6]上随机取一实数x,该实数x满足不等式1≤log2x≤2的概率为$\frac{4-2}{6-0}=\frac{1}{3}$;
故选B.

点评 本题考查了几何概型的概率求法;利用事件对应区间长度比求概率是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.将圆x2+y2-2x=0向左平移一个单位长度,再把所得曲线上每一点的纵坐标保持不变,横坐标变为原来的$\sqrt{3}$倍得到曲线C.
(1)写出曲线C的参数方程;
(2)以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\frac{3\sqrt{2}}{2}$,若A,B分别为曲线C及直线l上的动点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=5+lnx-\frac{kx}{x+1}$(k∈R).
(Ⅰ)求函数y=f(x)的单调区间;
(Ⅱ)若k∈N*,且当x∈(1,+∞)时,f(x)>0恒成立,求k的最大值.($ln(3+2\sqrt{2})≈1.76$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知实数x,y满足条件$\left\{\begin{array}{l}x≥2\\ x+y≤4\\ 2x-y-m≤0\end{array}\right.$,若目标函数z=2x+y的最大值为7,则m的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个几何体的三视图如图所示,则该几何体的体积等于(  )
A.72B.48C.24D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在等差数列{an}中,a1=-2017,其前n项和为Sn,若$\frac{{{S_{10}}}}{10}-\frac{S_8}{8}=2$,则S2017的值等于-2017.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍,为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中,中年职工抽到36人,则该样本中的青年职工抽取到的人数为32.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知等差数列{an}中,a1+a9=-4,a1+a13=-8,等比数列{bn}中,b5=a5,b7=a7,那么b15的值为(  )
A.64B.-64C.128D.-128

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.口袋中有6个大小相同的小球,其中1个小球标有数字“3”,2个小球标有数字“2”,3个小球标有数字“1”,每次从中任取一个小球,取后放回,连续抽取两次.
(I)求两次取出的小球所标数字不同的概率;
(II)记两次取出的小球所标数字之和为ξ,求ξ的分布列和期望.

查看答案和解析>>

同步练习册答案