| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
分析 关于x的不等式dx2+2a1x≥0的解集为[0,9],可得:0,9分别是一元二次方程dx2+2a1x≥0的两个实数根,且d<0.可得-$\frac{2{a}_{1}}{d}$=9,${a}_{1}=-\frac{9d}{2}$.于是an=$(n-\frac{11}{2})$d,即可判断出结论.
解答 解:∵关于x的不等式dx2+2a1x≥0的解集为[0,9],
∴0,9分别是一元二次方程dx2+2a1x≥0的两个实数根,且d<0.
∴-$\frac{2{a}_{1}}{d}$=9,可得:2a1+9d=0,
∴${a}_{1}=-\frac{9d}{2}$.
∴an=a1+(n-1)d=$(n-\frac{11}{2})$d,
可得:a5=-$\frac{1}{2}d$>0,${a}_{6}=\frac{1}{2}d$<0..
∴使数列{an}的前n项和Sn最大的正整数n的值是5.
故选:B.
点评 本题考查了等差数列的通项公式、一元二次方程及其一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 3-3$\sqrt{2}$ | C. | 3-2$\sqrt{3}$ | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{6}}}{2}$ | C. | $\sqrt{3}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,2] | B. | [-$\frac{1}{2}$,2] | C. | [-1,2] | D. | [-$\frac{1}{2}$,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [4k+1,4k+3](k∈Z) | B. | [2k+1,2k+3](k∈Z) | C. | [2k+1,2k+2](k∈Z) | D. | [2k-1,2k+2](k∈Z) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com