精英家教网 > 高中数学 > 题目详情
15.已知幂函数f(x)=$(m-1)^{2}{x}^{{m}^{2}-4m+2}$在(0,+∞)上单调递增,函数g(x)=2x-k,
(Ⅰ)求实数m的值;
(Ⅱ)当x∈(1,2]时,记f(x),g(x)的值域分别为集合A,B,若A∪B=A,求实数k的取值范围.

分析 (Ⅰ)根据幂函数的定义和性质即可求出m的值,
(Ⅱ)先求出f(x),g(x)的值域,再根据若A∪B⊆A,得到关于k的不等式组,解的即可.

解答 解:(Ⅰ)依题意幂函数f(x)=$(m-1)^{2}{x}^{{m}^{2}-4m+2}$得:(m-1)2=1,
解得m=0或m=2,
当m=2时,f(x)=x-2在(0,+∞)上单调递减,与题设矛盾,舍去
∴m=0.
(Ⅱ)由(Ⅰ)知f(x)=x2,当x∈[1,2]时,f(x),g(x)单调递增,
∴A=[1,4],B=[2-k,4-k],
∵A∪B⊆A,
∴$\left\{\begin{array}{l}{2-k≥1}\\{4-k≤4}\end{array}\right.$解得,0≤k≤1,
故实数K的取值范围为[0,1].

点评 本题主要考查了幂函数的性质定义,以及集合的运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.一个几何体的三视图如图所示,则该几何体的表面积是(  )
A.28B.27C.24D.21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点A的坐标为(5,2),F为抛物线y2=2x的焦点,若点P在抛物线上移动,当|PA|+|PF|取得最小值时,则点P的坐标是(  )
A.(1,$\sqrt{2}$)B.($\sqrt{2}$,2)C.(2,2)D.(4,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若(1-x)n的二项展开式中仅有第5项的二项式系数最大,则展开式中所有项的系数的绝对值之和是(  )
A.1B.256C.512D.1024

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设二次函数f(x)=mx2-nx(m≠0),已知f(x)的图象的对称轴为x=-1,且f(x)的图象与直线y=x只有一个公共点.
(1)求f(x)的解析式;
(2)若关于x的不等式ef(x)>${(\frac{1}{e})}^{2-tx}$在x∈R时恒成立(其中e为自然对数的底数),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知(1+x)n的展开式中只有第6项的二项系数最大,则展开式奇数项的二项系数和为(  )
A.212B.211C.210D.29

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.“DD共享单车”是为城市人群提供便捷经济、绿色低碳的环保出行方式,根据日前在三明市的投放量与使用的情况,有人作了抽样调查,抽取年龄在二十至五十岁的不同性别的骑行者,统计数据如下表所示:
  男性 女性 合计
 20~35岁 a 40 100
 36~50岁 40 d 90
 合计 100 90 190
(Ⅰ)求统计数据表中a,d的值;
(Ⅱ)假设用抽到的100名20~35岁年龄的骑行者作为样本估计全市的该年龄段男女使用”DD共享单车“情况,现从全市的该年龄段骑行者中随机抽取3人,求恰有一名女性的概率;
(Ⅲ)根据以上列联表,判断使用”DD共享单车“的人群中,能否有95%的把握认为”性别“与”年龄“有关,并说明理由.
参考数表
 P(K2>k) 0.100 0.050 0.010 0.001
 k 2.706 3.841 6.635 10.828
参考公式K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设(3x+$\sqrt{x}$)n的展开式的各项系数之和为M,二项式系数之和为N,若M-17N=480,则展开式中含x3项的系数为(  )
A.40B.30C.20D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一袋中装有5个球,编号分别为1,2,3,4,5;设编号为n的球重量为n2-6n+12; 这些球等可能地从袋中取出.
(1)任取1球,试求其重量大于编号的概率;
(2)不放回先后逐一取出2球,求他们质量相等的概率.

查看答案和解析>>

同步练习册答案