【题目】已知函数
(
),其中
是自然对数的底数.
(1)若
的两个根分别为
,且满足
,求
的值;
(2)当
时,讨论
的单调性.
【答案】(1)
;(2)见解析.
【解析】试题分析:(1)求出函数的导数,令导函数等于0,求出方程的根即可;(2)求出函数的导数,通过讨论
的范围,求出函数的单调区间即可.
试题解析:(1)
的定义域为
,
,由已知方程
有两个根,解得
,
,于是
,解得
.
(2)由(1)知
![]()
①当
时,
,当
,
;当
,
;所以
在
上单调递减,在
上单调递增.②当
时,令
,得
,由
得
,由
得
或
,所以
在
,
上单调递增,在
上单调递减;③当
时,令
,
,故
在
上递增;④当
时,令
,得
,由
得
,由
得
或
,所以
在
,
上单调递增,在
上单调递减;综上,当
时,
在
上单调递减,在
上单调递增.当
时,
在
,
上单调递增,在
上单调递减.当
时,
在
上递增.当
时,
在
,
上单调递增,在
上单调递减.
科目:高中数学 来源: 题型:
【题目】某厂需要确定加工某大型零件所花费的时间,连续4天做了4次统计,得到的数据如下:
零件的个数 | 2 | 3 | 4 | 5 |
加工的时间 | 2.5 | 3 | 4 | 5.5 |
(1)在直角坐标系中画出以上数据的散点图,求出
关于
的回归方程
,并在坐标系中画出回归直线;
![]()
(2)试预测加工10个零件需要多少时间?
参考公式:两个具有线性关系的变量的一组数据:
,
其回归方程为
,其中![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点
,焦点在
轴上的椭圆,离心率
,且椭圆过点
.
(1)求椭圆的方程;
(2)设椭圆左、右焦点分别为
,过
的直线
与椭圆交于不同的两点
,则
的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产
和
两种产品,按计划每天生产
各不得少于10吨,已知生产
产品
吨需要用煤9吨,电4度,劳动力3个(按工作日计算).生产
产品1吨需要用煤4吨,电5度,劳动力10个,如果
产品每吨价值7万元,
产品每吨价值12万元,而且每天用煤不超过300吨,用电不超过200度,劳动力最多只有300个,每天应安排生产
两种产品各多少才是合理的?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数,
).以原点
为极点,以
轴正半轴为极轴,与直角坐标系
取相同的长度单位,建立极坐标系.设曲线
的极坐标方程为
.
(Ⅰ)设
为曲线
上任意一点,求
的取值范围;
(Ⅱ)若直线
与曲线
交于两点
,
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,网格纸上小正方形的边长为
,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数g(x)=log2x,x∈(0,2),若关于x的方程|g(x)|2+m|g(x)|+2m+3=0有三个不同实数解,则实数m的取值范围为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com