精英家教网 > 高中数学 > 题目详情
15.解不等式:
(1)3≤|5-2x|<9
(2)|x-1|+|x-2|<2.

分析 (1)去掉绝对值,求出各个区间上的x的范围,取并集即可;(2)通过讨论x的范围,去掉绝对值,求出各个区间上的x的范围,取并集即可.

解答 解:(1)问题转化为$\left\{\begin{array}{l}{5-2x≥3或5-2x≤-3}\\{-9<5-2x<9}\end{array}\right.$,
即$\left\{\begin{array}{l}{x≤1或x≥4}\\{-2≤x≤7}\end{array}\right.$,故不等式的解集是:[-2,1]∪[4,7);
(2)x≥2时,x-1+x-2<2,解得:x<$\frac{5}{2}$,
1<x<2时,x-1+2-x=1<2,成立,
x≤1时,1-x+2-x<2,解得:x>$\frac{1}{2}$,
综上,不等式的解集是:$(\frac{1}{2},\frac{5}{2})$.

点评 本题考查了解绝对值不等式问题,考查分类讨论思想,转化思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设i为虚数单位,则复数(-2i-1)•i的共轭复数为(  )
A.-2-iB.2-iC.-2+iD.2+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若$\overrightarrow{a}$=(1,$\sqrt{5cosα}$),α为锐角,且|$\overrightarrow{a}$|=$\sqrt{2}$,则cos(180°-α)=-$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.△ABC的面积是10,内角A,B,C所对边长分别为a,b,c,$cosA=\frac{12}{13}$,则$\overrightarrow{AB}•\overrightarrow{AC}$=(  )
A.144B.48C.24D.13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a>b,下列关系式中一定正确的是(  )
A.a2<b2B.2a<2bC.a+2<b+2D.-a<-b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,若a=6,b=8,c=$2\sqrt{37}$,则△ABC的最大角的度数为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知点A(1,$\sqrt{2}$)是离心率为$\frac{\sqrt{2}}{2}$的椭圆C:$\frac{x^2}{b^2}+\frac{y^2}{a^2}=1$(a>b>0)上的一点,斜率为$\sqrt{2}$的直线BD交椭圆C于B、D两点,且A、B、D三点不重合
( I)求椭圆C的方程;
( II)求证:直线AB,AD的斜率之和为定值
( III)△ABD面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义域为R的函数f(x)=a+$\frac{2bx+3sinx+bxcosx}{2+cosx}$(a,b∈R)有最大值和最小值,且最大值与最小值之和为6,则3a-2b=(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设f(x)是定义在R上的奇函数,当x≤0时,f(x)=3x2-2x,则f(1)=(  )
A.5B.1C.-1D.-5

查看答案和解析>>

同步练习册答案