精英家教网 > 高中数学 > 题目详情
19.每袋砂糖的标准重量是500克,质监部门为了了解一批砂糖的重量状况,从中抽取了9袋,称得各袋的重量(单位:克)如下:
490    495    493    498    499    500    503     507     506
(Ⅰ)求出这组值的平均值和标准差;
(Ⅱ)若在低于标准值的5袋中随机没收两袋,求这两袋的重量都在平均值之下的概率.

分析 (Ⅰ)先求出平均值$\overline{x}$,再求出标准差.
(Ⅱ)基本事件总数:20,满足条件的基本事件个数:12,由此能求出这两袋的重量都在平均值之下的概率.

解答 解:(Ⅰ)平均值$\overline{x}$=$\frac{1}{9}$(490+495+498+499+500+503+507+506)499.…(3分)
标准差S=$\sqrt{\frac{1}{9}({9}^{2}+{4}^{2}+{6}^{2}+{1}^{2}+{0}^{2}+{1}^{2}+{4}^{2}+{8}^{2}+{7}^{2})}$=$\frac{2\sqrt{66}}{3}$.…(6分)
(Ⅱ)基本事件总数:20,满足条件的基本事件个数:12,
这两袋的重量都在平均值之下的概率:P=$\frac{12}{20}$=$\frac{3}{5}$.…(10分)

点评 本题考查平均值、标准差的求法,考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为2,那么双曲线的渐近线方程为(  )
A.$\sqrt{2}x±y=0$B.x±y=0C.2x±y=0D.$\sqrt{3}x±y=0$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.二进制数1101100(2)化为十进制数是108.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的焦距为$2\sqrt{5}$,且双曲线的一条渐近线方程为x-2y=0,则双曲线的方程为(  )
A.$\frac{x^2}{4}-{y^2}=1$B.$\frac{3{x}^{2}}{20}$-$\frac{3{y}^{2}}{5}$=1C.$\frac{{3{x^2}}}{20}-\frac{{3{y^2}}}{5}=1$D.$\frac{{3{x^2}}}{5}-\frac{{3{y^2}}}{20}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l:y=k(x-n)与抛物线y2=4x交于A(x1,y1),B(x2,y2)(x1x2≠0)两点.
(Ⅰ)若直线l过抛物线的焦点F,求x1x2的值;
(Ⅱ)若x1x2+y1y2=0,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π),在同一周期内,当$x=\frac{π}{12}$时,f(x)取得最大值3;当$x=\frac{7π}{12}$时,f(x)取得最小值-3.
(1)求函数f(x)的解析式和图象的对称中心;
(2)若$x∈[{-\frac{π}{3},\frac{π}{6}}]$时,关于x的方程2f(x)+1-m=0有且仅有一个实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,“天宫一号”运行的轨迹是如图的两个类同心圆,小圆的半径为2km,大圆的半径为4km,卫星P在圆环内无规则地自由运动,运行过程中,则点P与点O的距离小于3km的概率为(  )
A.$\frac{1}{12}$B.$\frac{5}{12}$C.$\frac{1}{3}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD.
(1)求证:直线ED⊥平面PAC;
(2)若直线PE与平面PAC所成的角的正弦值为$\frac{\sqrt{5}}{5}$,求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某同学从区间[-1,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对(x1,y1),(x2,y2),…(xn,yn),该同学用随机模拟的方法估计n个数对中两数的平方和小于1(即落在以原点为圆心,1为半径的圆内)的个数,则满足上述条件的数对约有$\frac{nπ}{4}$个.

查看答案和解析>>

同步练习册答案