| A. | ($\frac{1}{2}$,3) | B. | (3,+∞) | C. | ($\frac{1}{2}$,5) | D. | (5,+∞) |
分析 先作出不等式组对应的平面区域,利用z=x-y的最小值大于-3,先求出z=x-y最小值为-3时k的值,建立条件关系即可求实数k的值.
解答
解:由z=x-y得y=x-z,
∵目标函数z=x-y的最小值大于-3,
∴当目标函数z=x-y的最小值等于-3时,
由图象可知要使z=x-y的最小值为-3,
即y=x+3,此时直线y=x+3对应区域的截距最大,
由$\left\{\begin{array}{l}{y=x+3}\\{x+y-4=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=\frac{7}{2}}\end{array}\right.$,
即C($\frac{1}{2}$,$\frac{7}{2}$),
同时A也在直线kx-y+1=0上,则$\frac{1}{2}$k-$\frac{7}{2}$+1=0,
得$\frac{1}{2}$k=$\frac{7}{2}$-1=$\frac{5}{2}$,
即k=5,
∴要使目标函数z=x-y的最小值大于-3,则$\frac{1}{2}$<k<5,
故选:C.
点评 本题主要考查线性规划的应用,利用目标函数先求出z取得最小值为-3时,对应的k的值,然后得到平面区域的对应关系是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{5}{8}$ | C. | $\frac{1}{2}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | b>c>a | B. | c>a>b | C. | a>b>c | D. | a>c>b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 3 | C. | $\sqrt{10}$ | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com