精英家教网 > 高中数学 > 题目详情
19.函数f(x)=lg(2x-1)的定义域为$(\frac{1}{2},+∞)$.

分析 根据对数函数的真数大于0,列出不等式,求出解集即可.

解答 解:∵函数f(x)=lg(2x-1),
∴2x-1>0,
解得x>$\frac{1}{2}$;
∴f(x)的定义域为($\frac{1}{2}$,+∞).
故答案为:($\frac{1}{2}$,+∞).

点评 本题考查了求函数定义域的问题,求定义域是求使函数解析式有意义的自变量的取值范围,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,椭圆短轴长为$\frac{{2\sqrt{15}}}{3}$.
(1)求椭圆C的方程;
(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点,若点M(-$\frac{7}{3}$,0),求证:$\overrightarrow{MA}•\overrightarrow{MB}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知m∈R,复数z=m2-m-2+(m2-2m-3)i(i为虚数单位),当m为何值时?
(1)z是纯虚数;
(2)在复平面内z对应的点在直线x-2y-6=0上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设θ是△ABC的一个内角,且sinθ+cosθ=$\frac{1}{5}$,x2sinθ-y2cosθ=1表示(  )
A.焦点在x轴上的椭圆B.焦点在y轴上的椭圆
C.焦点在x轴上的双曲线D.焦点在y轴上的双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若关于x的不等式x2-ax+2<0的解集是(1,2),则a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知命题A={x|x2-2x-8<0},B=$\left\{{\left.x\right|\frac{x-m+3}{x-m}<0,m∈R}\right\}$.
(1)若A∩B=(2,4),求m的值;
(2)若B⊆A,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知z为复数,z+2i为实数,且(1-2i)z为纯虚数,其中i是虚数单位.
(1)求复数z;
(2)若复数z满足$|{ω-\overline z}|=1$,求|ω|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=cosx•sin({x+\frac{π}{3}})-\sqrt{3}{cos^2}x+\frac{{\sqrt{3}}}{4}$,x∈R.
(1)求f(x)的最小正周期和对称轴方程;
(2)求不等式f(x)≥$\frac{1}{4}$中x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=sin(2x+θ)+$\sqrt{3}$ cos(2x+θ)(x∈R)满足2015f(-x)=$\frac{1}{{{{2015}^{f(x)}}}}$,且f(x)在[0,$\frac{π}{4}$]上是减函数,则θ的一个可能值是(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.$\frac{5π}{3}$

查看答案和解析>>

同步练习册答案