精英家教网 > 高中数学 > 题目详情
11.设ξ是随机变量,a,b是非零常数,有下列等式:①D(aξ+b)=a2D(ξ)+b;②E(aξ)=a2E(ξ);③D(aξ)=a2D(ξ);④E(aξ+b)=aE(ξ),其中,正确的序号是③.

分析 利用期望、方差的性质,即可得出结论.

解答 解:①D(aξ+b)=a2D(ξ),故不正确;
②E(aξ)=aE(ξ),故不正确;
③D(aξ)=a2D(ξ),故正确;
④E(aξ+b)=aE(ξ)+b,故不正确,
故答案为:③.

点评 本题考查期望、方差的性质,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知e=2.71828…为自然对数的底数.
(1)求函数f(x)=$\frac{{x}^{2}}{lnx}$在区间[e${\;}^{\frac{1}{2}}$,e]上的最值;
(2)当0<m<$\frac{1}{2}$时,设函数G(x)=f(x)+$\frac{4{m}^{2}-4mx}{lnx}$(其中m为常数)的3个极值点为a,b,c,且a<b<c,将2a,b,c,0,1这5个数按照从小到大的顺序排列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.曲线y=x2在点(1,1)处的切线与坐标轴所围三角形的面积为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,F1、F2分别为椭圆C的左、右焦点,$P(1,\frac{{\sqrt{3}}}{2})$是椭圆C上一点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q(1,0)的直线l交椭圆C于A、B两点,O是坐标原点,且$\overrightarrow{OA}⊥\overrightarrow{OB}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.△ABC中,A(1,2),B(4,1),C(3,4),直线PQ平行于BC分别交AB、AC于P、Q两点且三角形APQ与四边形BCQP的面积的比为4:5,求P、Q坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长,现从中选5人主持某种活动,依下列条件各有多少种选法?
(1)只有1名女生当选;
(2)两名队长当选;
(3)至少有1名队长当选;
(4)至多有2名女生当选;
(5)既要有队长,又要有女生当选.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.抛掷一颗骰子,设所的点数为ξ,则Dξ=$\frac{35}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.k是直线l的斜率,θ是直线l的倾斜角,若30°≤θ<120°,则k的取值范围是(  )
A.-$\sqrt{3}$≤k≤$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$≤k≤1C.k<-$\sqrt{3}$或k≥$\frac{\sqrt{3}}{3}$D.k≥$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若A=30°,b=6,a=m(m>0)可作一个三角形的边与角,求实数m的取值范围,并指出对于给定的m构成三角形的个数.

查看答案和解析>>

同步练习册答案