精英家教网 > 高中数学 > 题目详情
14.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为(  )
A.2B.4C.4+4$\sqrt{2}$D.6+4$\sqrt{2}$

分析 由三视图得出该几何体是一个以正视图为底面的三棱柱,
结合图中数据求出三棱柱的表面积.

解答 解:由几何体的三视图可得:
该几何体是一个以正视图为底面的三棱柱,
底面面积为:$\frac{1}{2}$×2×1=1,
底面周长为:2+2×$\sqrt{2}$=2+2$\sqrt{2}$,
故直三棱柱的表面积为
S=2×1+2×(2+2$\sqrt{2}$)=6+4$\sqrt{2}$.
故选:B.

点评 本题考查了空间几何体三视图以及表面积的计算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知椭圆C的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,({a>b>0})$,点F1,F2分别为其左右焦点,离心率为e,直线l:y=ex+a与x轴、y轴分别交于A,B两点,点M是直线l与椭圆C的一个公共点,设$\overrightarrow{AM}=λ\overrightarrow{AB}$.
(1)证明:λ=1-e2
(2)若λ=$\frac{3}{4}$,△MF1F2的周长为6,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AC=AB1
(1)证明:AB⊥B1C;
(2)若∠CAB1=90°,∠CBB1=60°,AB=BC=2,求三棱锥B1-ACB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),其导函数的图象f'(x)如图所示,则$f({\frac{π}{2}})$的值为(  )
A.$2\sqrt{3}$B.2C.$2\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.不等式组$\left\{\begin{array}{l}-1≤x≤1\\ 0≤y≤2\end{array}\right.$表示的点集M,不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{y≥2{x}^{2}}\end{array}\right.$表示的点集记为N,在M中任取一点P,则P∈N的概率为(  )
A.$\frac{5}{32}$B.$\frac{9}{32}$C.$\frac{9}{16}$D.$\frac{5}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax+x2-xlna(a>0且a≠1).
(1)讨论函数f(x)的单调性;
(2)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某厂家计划在2016年举行商品促销活动,经调查测算,该商品的年销售量m万件与年促销费用x万元满足:m=3-$\frac{2}{x+1}$,已知2016年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家的产量等于销售量,而销售收入为生产成本的1.5倍(生产成本由固定投入和再投入两部分资金组成).
(1)将2016年该产品的利润y万元表示为年促销费用x万元的函数;
(2)该厂2016年的促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为x=-1,直线l与抛物线相交于不同的A,B两点.
(1)求抛物线的标准方程;
(2)如果直线l过抛物线的焦点,求$\overrightarrow{OA}•\overrightarrow{OB}$的值;
(3)如果$\overrightarrow{OA}•\overrightarrow{OB}=-4$,直线l是否过一定点,若过一定点,求出该定点;若不过一定点,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知{an}为正项等比数列,$S_n^{\;}$是它的前n项和,若a3与a5的等比中项是2,且a4与2a7的等差中项为$\frac{5}{4}$,则S5=(  )
A.35B.33C.31D.29

查看答案和解析>>

同步练习册答案