精英家教网 > 高中数学 > 题目详情
已知函数y=sin(
π
3
-2θ)+cos(
π
3
+2θ),求函数最大值和周期.
考点:两角和与差的正弦函数
专题:三角函数的求值
分析:利用三角恒等变换可求得y=
6
+
2
2
cos(2θ+
π
4
),利用余弦函数的性质可得函数最大值和周期.
解答: 解:∵y=sin(
π
3
-2θ)+cos(
π
3
+2θ)
=
3
2
cos2θ-
1
2
sin2θ+
1
2
cos2θ-
3
2
sin2θ
=(
3
2
+
1
2
)(cos2θ-sin2θ)
=(
3
2
+
1
2
)×
2
2
2
cos2θ-
2
2
sin2θ)
=
6
+
2
2
cos(2θ+
π
4
),
∴函数的最大值为
6
+
2
2
,其周期T=
2
=π.
点评:本题考查三角恒等变换的应用及两角差的正弦、两角和与差的余弦,突出考查余弦函数的性质,求得y=
6
+
2
2
cos(2θ+
π
4
)是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a2+a10=16,则a4+a8=(  )
A、12B、16C、20D、24

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧面PAD⊥底面ABCD,且AD=
2
PA=
2
PD.
(1)求证:平面PAB⊥平面PCD
(2)在线段AB上是否存在点G,使得平面PCD与平面PGD夹角的余弦值为
1
3
?若存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是公差不为0的等差数列,a1=1,且a2,a4,a8成等比数列.
(1)求数列{an}的通项公式;
(2)若等比数列{bn}的各项都是正数,
Sn
2
=15,
S2n
2
=255,且在前n项和中,最大项为16,令Cn=an•bn,求数列{Cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b是两个不相等的正数,且满足a3-b3=a2-b2,求所有可能的整数c,使c=9a•b.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断函数f(x)=x|x|+x3的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=2,PD=
2
,M为棱PB的中点.
(Ⅰ)证明:DM⊥平面PBC;
(Ⅱ)求二面角A-DM-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心为C的圆过点A(0,-6)和B(1,-5),且圆心在直线l:x-y+1=0上.
(1)求圆心为C的圆的标准方程;
(2)过点M(2,8)作圆的切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆
x2
3
+
y2
2
=1的焦点F1,F2分别作互相垂直的直线l1,l2
(1)直线l1,l2交于P(x0,y0),求证:
x02
3
+
y02
2
<1
(2)若直线l1,l2分别与椭圆交于A,C和B,D,
(i)求证:
1
|AC|
+
1
|BD|
=定值
(ii)求四边形ABCD面积的最小值.

查看答案和解析>>

同步练习册答案