精英家教网 > 高中数学 > 题目详情
设计算法程序框图,要求输入自变量x的值,输出函数f(x)=
πx-5   (x>0)
0           (x=0)
πx+3    (x<0)
的值.
考点:设计程序框图解决实际问题
专题:算法和程序框图
分析:根据题目已知中分段函数的解析式f(x)=
πx-5(x>0)
0(x=0)
πx+3(x<0)
,然后根据分类标准,设置两个判断框的并设置出判断框中的条件,再由函数各段的解析式,确定判断框的“是”与“否”分支对应的操作,由此即可画出流程图,再编写满足题意的程序.
解答: 解:满足解析式f(x)=
πx-5(x>0)
0(x=0)
πx+3(x<0)
的程序框图,如下图所示:
点评:本题考查了设计程序框图解决实际问题.主要考查编写程序解决分段函数问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(2+cos(2x-
π
3
),sinx-cosx),
b
=(1,sinx+cosx),函数f(x)=
a
b
-m(x∈R)在区间[-
π
24
12
]上的最小值为-
2
2

(Ⅰ)求实数m的值;
(Ⅱ)在△ABC中,角A,B,C所对的边是a,b,c.若A为锐角,且满足f(A)=1,sinB=2sinC,△ABC面积为
3
,求边长a.

查看答案和解析>>

科目:高中数学 来源: 题型:

某产品的广告费用支出x万元与销售额y万元之间有如下的对应数据:
 x  2  4  5  6  8
 y  30  40  60  50  70
(1)画出上表数据的散点图;
(2)根据上表提供的数据,求出y关于x的线性回归方程;
(3)据此估计广告费用为10万元时,所得的销售收入.
(参考数值:
5
i=1
x
2
i
=145,
5
i=1
xiyi=1380,参考公式:b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
=
n
i=1
xiyi-
.
x
.
y
n
i=1
x
2
i
-n
.
x2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:
x2
2m
+
y2
9-m
=1表示焦点在y轴上的椭圆,命题Q:双曲线
y2
5
-
x2
m
=1的离心率e∈(
6
2
2
),若命题P、Q中有且只有一个为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知极坐标系的极点在直角坐标系的原点O处,极轴与x轴的正半轴重合,直线l的参数方程为
x=tcosα
y=tsinα
(t为参数,0≤α<π),圆C的极坐标方程为ρ2-8ρcosθ+12=0.若tanα=
1
2
,直线l与圆C交于A、B两点,求|OA|+|OB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(2,3),
b
=(-1,2)当k为何值时,
(Ⅰ)k
a
+
b
a
-3
b
垂直?
(Ⅱ)k
a
+
b
a
-3
b
平行?平行时它们是同向还是反向?

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥A-BCD中,点E、F、G、H分别是AB、BC、CD、DA的中点.
(Ⅰ)若AC=BD,求证:四边形EFGH为菱形;
(Ⅱ)若AB=AD,BC=CD,且O为BD中点,求证:BD⊥平面AOC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直角坐标系xoy中,直线的参数方程为
x=t-3
y=
3
t
(t为参数).以直角坐标系xOy中的原点O为极点,x轴的非负半轴为极轴,圆C的极坐标方程为ρ2-6ρcosθ+5=0,则圆心C到直线距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项的和Sn=2n-1,则an=
 

查看答案和解析>>

同步练习册答案