精英家教网 > 高中数学 > 题目详情
已知不等式|2|x|-2|x-a||≤2(a>1)的解为1≤x≤2,求实数a的值.
考点:绝对值不等式的解法
专题:计算题,不等式的解法及应用
分析:利用绝对值的几何意义,结合1≤x≤2,即可求实数a的值
解答: 解:∵不等式|2|x|-2|x-a||≤2,
∴-2≤2|x|-2|x-a|≤2,
∴|x|-1≤|x-a|≤|x|+1,
∵1≤x≤2,
∴x-1≤|x-a|≤x+1,
a≥2时,x-1≤a-x≤x+1,
∴a-1≤2x≤a+1,∴a=3.
1<a<2,若x>a,则x-1≤x-a≤x+1,-1≤-a≤1,矛盾,
若x≤a,则x-1≤a-x≤x+1,∴a=3,矛盾,
∴a=3.
点评:本题考查绝对值不等式的解法,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

复数
1+i
i3
的共轭复数对应的点位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=2,且对任意的正整数n,m,都有an+m=an+am
(Ⅰ)求出a2,a3,a4,并猜想数列{an}的通项公式an(不需要证明);
(Ⅱ)设bn=
1
2n+1
•an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.
(1)若A∪B=B,求a的取值范围;
(2)若B?A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3+x2
(1)若方程f(x)=t有三个不等的实根,求实数t的取值范围;
(2)设函数g(x)=f(x)+mx,若g(x)的极值存在,求实数m的取值范围;
(3)设{an}是正数组成的数列,前n项和为Sn,其中a1=f′(1),若点(an,an+12-2an+1)(n∈N*)在函数y=f′(x)的图象上,求证:点(n,Sn)也在y=f′(x)的图象上.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos2x+2sinxcosx-1.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)当x∈[-
π
4
π
4
]时,求函数f(x)的最大值,并写出x相应的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程ax2+4x+1=0的解集为A,且A中有两个元素,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)计算log3
27
+lg25+lg4+7 log72+(-9.8)0
(2)比较三个数a=0.32,b=log20.3,c=20.3之间的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin(
πx
3
-
π
3
﹚-1.
(1)求函数最小正周期及单调递增区间;
(2)若函数y=g(x)与y=f(x)的图象关于直线x=2对称,求当x∈[0,1]时,函数y=g(x)的最大值.

查看答案和解析>>

同步练习册答案