精英家教网 > 高中数学 > 题目详情
在数列{an}中,已知a1=2,且对任意的正整数n,m,都有an+m=an+am
(Ⅰ)求出a2,a3,a4,并猜想数列{an}的通项公式an(不需要证明);
(Ⅱ)设bn=
1
2n+1
•an,求数列{bn}的前n项和Sn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(I)由对任意的正整数n,m,都有an+m=an+am,a1=2.可得:a2=a1+a1=2,a3=a1+a2=2+2=4,a4=2a2=8.…,即可猜想出.
(II)bn=
1
2n+1
•an=
2n
2n+1
=
n
2n
.利用“错位相减法”和等比数列的前n项和公式即可得出.
解答: 解:(I)由对任意的正整数n,m,都有an+m=an+am,a1=2.
可得:a2=a1+a1=2,a3=a1+a2=2+2=4,a4=2a2=8.
猜想an=2n.
(II)bn=
1
2n+1
•an=
2n
2n+1
=
n
2n

∴Sn=
1
21
+
2
22
+
3
23
+…+
n
2n

1
2
Sn=
1
22
+
2
23
+…+
n-1
2n
+
n
2n+1

两式相减可得:
1
2
Sn
=
1
2
+
1
22
+…+
1
2n
-
n
2n+1
=
1
2
(1-
1
2n
)
1-
1
2
-
n
2n+1
=1-
1
2n
-
n
2n+1

∴Sn=2-
1
2n-1
-
n
2n+1
点评:本题考查了递推数列的意义、“错位相减法”和等比数列的前n项和公式,考查了推理能力与计算能力,考查了猜想归纳能力.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正六棱柱的底面边长为2,最长的一条对角线长为2
5
,则它的侧面积为(  )
A、24
B、24
2
C、12
D、12
2

查看答案和解析>>

科目:高中数学 来源: 题型:

某圆的圆心在直线y=2x上,并且在两坐标轴上截得的弦长分别为4和8,则该圆的方程为(  )
A、(x-2)2+(y-4)2=20
B、(x-4)2+(y-2)2=20
C、(x-2)2+(y-4)2=20或(x+2)2+(y+4)2=20
D、(x-4)2+(y-2)2=20或(x+4)2+(y+2)2=20

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(
x+1
x
)=
x2+1
x2
+
1
x
,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(2x+
π
3
)+sin2x.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,若f(
C
2
)=-
1
4
,a=2,c=2
3
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F,左、右顶点A1、A2,右准线l:x=4且|A2F|=1.
(1)求椭圆C的标准方程;
(2)若过点F且斜率不为零的直线交椭圆与B、C两点,直线A1B、A1C分别交l于点M、N,试判断点F是否在以MN为直径的圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F(1,0),P是平面上一动点,P到直线l:x=-1上的射影为点N,且满足(
PN
+
1
2
NF
)•
NF
=0
(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)若直线y=x与曲线C交与点M(异于O点),O为坐标原点.过点M作倾斜角互补的两条直线,分别与曲线C交于A、B两点(异于M).求证:直线AB的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式|2|x|-2|x-a||≤2(a>1)的解为1≤x≤2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:x+
1
x
=a+
1
a
的充分但非必要条件是x=a(其中ax≠0).

查看答案和解析>>

同步练习册答案