精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\frac{1}{2}$x3+cx在x=1处取得极值.
(1)求函数f(x)的解析式;
(2)求函数f(x)的极值.

分析 (1)求出函数的导数,计算f′(1),求出c的值,从而求出f(x)的解析式即可;
(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可.

解答 解:(1)f′(x)=$\frac{3}{2}$x2+c,当x=1时,f(x)取得极值,
则f′(1)=0,即$\frac{3}{2}$+c=0,得c=-$\frac{3}{2}$.故f(x)=$\frac{1}{2}$x3-$\frac{3}{2}$x.
(2)f′(x)=$\frac{3}{2}$x2-$\frac{3}{2}$=$\frac{3}{2}$(x2-1)=$\frac{3}{2}$(x-1)(x+1),
令f′(x)=0,得x=-1或1.
x,f′(x),f(x)的变化情况如下表:

x(-∞,-1)-1(-1,1)1(1,+∞)
f′(x)+0-0+
f(x)极大值极小值
因此,f(x)的极大值为f(-1)=1,极小值为f(1)=-1.

点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若函数t=f(x)的值域为(0,8],则y=t2-10t-4的值域为(  )
A.[-20,-4)B.[-20,-4]C.[-29,-20]D.[-29,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)是定义在[a-1,2a]上的偶函数,则a=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=logax(x>0)且a≠1)的图象经过点(2$\sqrt{2}$,-1),函数y=bx(b>0)且b≠1)的图象经过点(1,2$\sqrt{2}$),则下列关系式中正确的是(  )
A.a2>b2B.2a>2bC.($\frac{1}{2}$)a>($\frac{1}{2}$)bD.a${\;}^{\frac{1}{2}}$>b${\;}^{\frac{1}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知loga9=-2,则a的值为(  )
A.-3B.$-\frac{1}{3}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知定义在R上的偶函数f(x)满足f(x+4)=f(x)+f(2),且当x∈[0,2]时函数f(x)单调递减,给出下列四个命题中正确的是①②④.
①f(2)=0;
②x=-4为函数f(x)的一条对称轴;
③函数f(x)在[8,10]上单调递增;
④若方程f(x)=m在区间[-6,-2]上的两根为x1,x2,则x1+x2=-8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将函数f(x)=3sin(2x+φ),φ∈(0,π)的图象沿x轴向右平移$\frac{π}{6}$个单位长度,得到函数g(x)的图象,若函数g(x)满足g(|x|)=g(x),则φ的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.命题“对任意$x∈[0,\frac{π}{4}]$,tanx<m恒成立”是假命题,则实数m取值范围是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等比数列{an}满足2a3+a5=3a4,且a3+2是a2与a4的等差中项.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{{a}_{n}}{{(a}_{n}-1){(a}_{n+1}-1)}$,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案