精英家教网 > 高中数学 > 题目详情
6.某校高三(1)班共有48人,学号依次为1,2,3,…,48,现用系统抽样的办法抽取一个容量为6的样本.已知学号为3,11,19,35,43的同学在样本中,那么还有一个同学的学号应为(  )
A.27B.26C.25D.24

分析 根据系统抽样的特征,从48名学生从中抽取一个容量为6的样本,则系统抽样的分段间隔为8,可求得余下的同学的编号.

解答 解:∵从48名学生从中抽取一个容量为6的样本,
∴系统抽样的分段间隔为$\frac{48}{6}$=8,
∵学号为3,11,19,35,43的同学在样本中,
∴抽取的另一个同学的学号应为27,
故选:A.

点评 本题考查了系统抽样方法,关键是求得系统抽样的分段间隔.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知在等比数列{an}中,a1+2a2=1,a${\;}_{3}^{2}$=2a2a5
(1)求数列{an}的通项公式;
(2)设bn=log2a1+log2a2+…+log2an,求数列{$\frac{1}{{b}_{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}满足2Sn=4an-1.则数列{$\frac{1}{lo{g}_{2}{a}_{n+3}{lo{g}_{2}{a}_{n+2}$}的前100项和为(  )
A.$\frac{97}{100}$B.$\frac{98}{99}$C.$\frac{99}{100}$D.$\frac{100}{101}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数y=f(x)的图象是折线ABCDE,如图,其中A(1,2),B(2,1),C(3,2),D(4,1),E(5,2),若直线y=kx+b与y=f(x)的图象恰有四个不同的公共点,则k的取值范围是(  )
A.(-1,0)∪(0,1)B.$(-\frac{1}{3},\frac{1}{3})$C.(0,1]D.$[{0.\frac{1}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设全集U=R,A={x|0.3x<1},B={x|x<x2-2},则A∩(∁UB)=(  )
A.{x|-1<x<0}B.{x|0<x≤2}C.{x|0<x<2}D.{x|0<x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=$\frac{{a}^{2}+asinx+2}{{a}^{2}+acosx+2}$(x∈R)的最大值为M(a),最小值为m(a),则M(a)•m(a)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若tan(180°-α)=-$\frac{4}{3}$,则tan(α+405°)等于(  )
A.$\frac{1}{7}$B.7C.-$\frac{1}{7}$D.-7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx-ex+ax,其中a∈R,令函数g(x)=f(x)+ex+1.
(Ⅰ)当a=1时,求函数f(x)在x=1处的切线方程;
(Ⅱ)当a=-e时,证明:g(x)≤-1;
(Ⅲ)试判断方程|g(x)|=$\frac{lnx}{x}+\frac{1}{2}$是否有实数解,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知各项均为正数的数列{an}满足,对任意的正整数m,n都有am•an=2m+n+2成立.
(Ⅰ)求数列{log2an}的前n项和Sn
(Ⅱ)设bn=an•log2an(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案