精英家教网 > 高中数学 > 题目详情
已知直线,直线,给出下列命题
;②m;③;④.
其中正确命题的序号是(   )
A.①②③B.②③④C. ①③D.②④
C
由垂直、平行可得.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

垂直于所在平面,与平面角,又,①求证:;②求与平面所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在四棱锥中,底面是一直角梯形,底面
(1)求三棱锥的体积;
(2)在上是否存在一点,使得平面,若存在,求出的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
   如图,在四棱锥P-ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD,底面ABCD为直角梯形,其中BCADABADAD=2AB=2BC=2,OAD中点。

(Ⅰ)求证:PO⊥平面ABCD
(Ⅱ)求异面直线PDCD所成角的大小;
(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在直三棱柱中,平面侧面。
(Ⅰ)求证:
(Ⅱ)若直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为φ,试判断θφ的大小关系,并予以证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的多面体中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,EC⊥AC,EF∥AC,AB=,EF=EC=1,
⑴求证:平面BEF⊥平面DEF;
⑵求二面角A-BF-E的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,ABCD-A1B1C1D1为正方体,则以下结论:
①BD∥平面CB1D1; 
②AC1⊥BD; 
③AC1⊥平面CB1D
其中正确结论的个数是           (   )
A.0B.1 C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中错误的是(        ).
A.如果平面⊥平面,那么内所有直线都垂直于平面
B.如果平面⊥平面,那么内一定存在直线平行于平面
C.如果平面不垂直于平面,那么内一定不存在直线垂直于平面
D.如果平面⊥平面,平面⊥平面,那么平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD A1B1C1D1中,已知E是棱C1D1的中点,则异面直线B1D1CE所成角的余弦值的大小是                                                                                               (   )
A.B.C.D.

查看答案和解析>>

同步练习册答案