精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=xlnx+ax(a∈R).
(1)若函数f(x)在区间[e,e2]上为减函数,求a的取值范围;
(2)若对任意x∈(1,+∞),f(x)>k(x-1)+ax-x恒成立,求正整数k的最大值.

分析 (1)求出原函数的导函数,由函数f(x)在区间[e,e2]上为减函数,问题转化为a≥-1-lnx,然后利用函数的单调性,答案可求;
(2)把函数f(x)的解析式代入f(x)>k(x-1)+ax-x,整理后得k<$\frac{xlnx+x}{x-1}$,问题转化为对任意x∈(1,+∞),k<$\frac{xlnx+x}{x-1}$恒成立,求正整数k的值.设函数h(x)=$\frac{x(lnx+1)}{x-1}$,求其导函数,得到其导函数的零点x0位于(3,4)内,且知此零点为函数h(x)的最小值点,经求解知h(x0)=x0,从而得到k<x0,则正整数k的值可求.

解答 解:(1)由f(x)=xlnx+ax,得:f′(x)=lnx+a+1,
∵函数f(x)在区间[e,e2]上为减函数,
∴当x∈[e,e2]上时f′(x)≤0,
即lnx+a+1≤0在区间[e,e2]上恒成立,
∴a≤-1-lnx,
设g(x)=-lnx-1,x∈[e,e2],g′(x)=-$\frac{1}{x}$<0,
g(x)在[e,e2]上单调递减,
∴a≤g(x)min=g(e2)=-3;
(2)若对任意x∈(1,+∞),f(x)>k(x-1)+ax-x恒成立,
即x•lnx+ax>k(x-1)+ax-x恒成立,
也就是k(x-1)<x•lnx+ax-ax+x恒成立,
∵x∈(1,+∞),∴x-1>0.
则问题转化为k<$\frac{xlnx+x}{x-1}$对任意x∈(1,+∞)恒成立,
设函数h(x)=$\frac{x(lnx+1)}{x-1}$,则h′(x)=$\frac{x-lnx-2}{{(x-1)}^{2}}$,
再设m(x)=x-lnx-2,则m′(x)=1-$\frac{1}{x}$,
∵x∈(1,+∞),∴m′(x)>0,则m(x)=x-lnx-2在(1,+∞)上为增函数,
∵m(1)=1-ln1-2=-1,m(2)=2-ln2-2=-ln2,
m(3)=3-ln3-2=1-ln3<0,m(4)=4-ln4-2=2-ln4>0,
∴?x0∈(3,4),使m(x0)=x0-lnx0-2=0.
∴当x∈(1,x0)时,m(x)<0,h′(x)<0,
∴h(x)=$\frac{x(1+lnx)}{x-1}$在(1,x0)上递减,
x∈(x0,+∞)时,m(x)>0,h′(x)>0,
∴h(x)=$\frac{x(1+lnx)}{x-1}$在(x0,+∞)上递增,
∴h(x)的最小值为h(x0)=$\frac{{x}_{0}(1+l{nx}_{0})}{{x}_{0}-1}$,
∵m(x0)=x0-lnx0-2=0,∴lnx0+1=x0-1,
代入函数h(x)=$\frac{x(lnx+1)}{x-1}$得h(x0)=x0
∵x0∈(3,4),且k<h(x)对任意x∈(1,+∞)恒成立,
∴k<h(x)min=x0,∴k≤3,
∴k的最大值是3.

点评 本题考查了利用导数研究函数的单调性,考查了导数在最大值和最小值中的应用,考查了数学转化思想,解答此题的关键是,在求解(2)时如何求解函数h(x)=$\frac{x(lnx+1)}{x-1}$的最小值,学生思考起来有一定难度.此题属于难度较大的题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知圆C过点M(0,-2)和点N(3,1),且圆心C在直线x+2y+1=0上.
(1)求圆C的方程;
(2)过点(6,3)作圆C的切线,求切线方程;
(3)设直线l:y=x+m,且直线l被圆C所截得的弦为AB,满足$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.方程lg(2x2+x)=0的解x为-1或$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知角α的终边上一点P(-4,3),则cosα=(  )
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某校选择高一年级三个班进行为期二年的教学改革试验,为此需要为这三个班各购买某种设备1台,经市场调研,该种设备有甲乙两型产品,甲型价格是3000元/台,乙型价格是2000元/台,这两型产品使用寿命都至少是一年,甲型产品使用寿命低于2年的概率是$\frac{1}{4}$,乙型产品使用寿命低于2年的概率是$\frac{2}{3}$,若某班设备在试验期内使用寿命到期,则需要再购买乙型产品更换.
(1)若该校购买甲型2台,乙型1台,求试验期内购买该种设备总费用恰好是10000元的概率;
(2)该校有购买该种设备的两种方案,A方案:购买甲型3台;B方案:购买甲型2台乙型1台.若根据2年试验期内购买该设备总费用的期望值决定选择哪种方案,你认为该校应该选择哪种方案?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知角α的终边经过点P(4,-3),则2sinα+3cosα=$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}的前n项和为Sn,且a1=-1,an+1=SnSn+1,计算S1,S2,S3,由此推测计算Sn的公式,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$\overrightarrow a,\overrightarrow b,\overrightarrow c$均为单位向量,且$\overrightarrow a•\overrightarrow b$=0,则($\overrightarrow a+\overrightarrow b+\overrightarrow c$)•($\overrightarrow a+\overrightarrow c$) 的最大值是(  )
A.2+2$\sqrt{2}$B.3+$\sqrt{2}$C.2+$\sqrt{5}$D.1+2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(2-x),(x≤1)}\\{2|x-5|-2,(3≤x≤7)}\end{array}\right.$(a>0且a≠1)的图象上关于直线x=1对称的点有且仅有一对,则实数a的取值范围为$[{\sqrt{3},\sqrt{7}})∪\left\{{\frac{{\sqrt{5}}}{5}}\right\}$.

查看答案和解析>>

同步练习册答案