·ÖÎö £¨1£©ÉèP£¨x£¬y£©Îª£¨2cos¦Á£¬sin¦Á£©£¬0¡Ü¦Á£¼2¦Ð£¬ÓÉж¨ÒåÇóµÃ¦Ä1¡¢¦Ä2£¬ÔÙÓɶþ±¶½ÇµÄÓàÏÒ¹«Ê½£¬½áºÏÓàÏÒº¯ÊýµÄÖµÓò¼´¿ÉµÃµ½ËùÇó·¶Î§£»
£¨2£©ÓÉж¨Òå¿ÉµÃΪ¦Ç1¡¢¦Ç2£¬¼ÙÉè´æÔÚt£¬½áºÏºãµÈʽµÄ֪ʶ£¬Í¬½ÇµÄƽ·½¹ØÏµ£¬¿ÉµÃtµÄÖµ£»
£¨3£©ÓÉж¨Òå¿ÉµÃ¦Ë1£¬¦Ë2£¬´úÈë¦Ë1¦Ë2£¾b2£¬»¯¼òÕûÀí¿ÉµÃn2£¾b2+m2a2£¬ÔÙÓÉÁ½µãµÄ¾àÀ빫ʽ£¬ÇóµÃ|AB|2=$\frac{{n}^{2}}{{m}^{2}}$+n2£¬ÔËÓò»µÈʽµÄÐÔÖʺͻù±¾²»µÈʽ£¬¼´¿ÉµÃµ½´óС¹ØÏµ£®
½â´ð ½â£º£¨1£©ÉèP£¨x£¬y£©Îª£¨2cos¦Á£¬sin¦Á£©£¬0¡Ü¦Á£¼2¦Ð£¬
ÓÉÌâÒâ¿ÉµÃ¦Ä1=$\frac{x-2y}{\sqrt{1+4}}$£¬¦Ä2=$\frac{x+2y}{\sqrt{1+4}}$£¬
¼´ÓЦÄ1¦Ä2=$\frac{{x}^{2}-4{y}^{2}}{5}$=$\frac{4co{s}^{2}¦Á-4si{n}^{2}¦Á}{5}$=$\frac{4}{5}$cos2¦Á£¬
ÓÉ-1¡Ücos2¦Á¡Ü1£¬¿ÉµÃ¦Ä1¦Ä2µÄ·¶Î§ÊÇ[-$\frac{4}{5}$£¬$\frac{4}{5}$]£»
£¨2£©ÓÉÌâÒâ¿ÉµÃ¦Ç1=$\frac{-tcos¦Á-2}{\sqrt{co{s}^{2}¦Á+4si{n}^{2}¦Á}}$£¬¦Ç2=$\frac{tcos¦Á-2}{\sqrt{co{s}^{2}¦Á+4si{n}^{2}¦Á}}$£¬
¼ÙÉè´æÔÚʵÊýt£¬¶ÔÈÎÒâµÄ¦Á¶¼ÓЦÇ1¦Ç2=1ºã³ÉÁ¢£®
¼´ÓÐ$\frac{4-{t}^{2}co{s}^{2}¦Á}{co{s}^{2}¦Á+4si{n}^{2}¦Á}$=1£¬
¼´Îª4-t2cos2¦Á=cos2¦Á+4sin2¦Á=4-3cos2¦Á£¬
¼´ÓÐt2=3£¬½âµÃt=¡À$\sqrt{3}$£¬
¹Ê´æÔÚ£¬ÇÒt=¡À$\sqrt{3}$£»
£¨3£©ÉèµãF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬
ÓÉÌâÒâ¿ÉµÃ¦Ë1=$\frac{-mc+n}{\sqrt{1+{m}^{2}}}$£¬¦Ë2=$\frac{mc+n}{\sqrt{1+{m}^{2}}}$£¬
¦Ë1¦Ë2£¾b2£¬¼´Îª$\frac{{n}^{2}-{m}^{2}{c}^{2}}{1+{m}^{2}}$£¾b2£¬
¼´ÓÐn2-m2c2£¾b2+b2m2£¬
¼´Îªn2-m2£¨a2-b2£©£¾b2+b2m2£¬
»¯¼ò¿ÉµÃn2£¾b2+m2a2£¬
ÓÉÌâÒâ¿ÉµÃA£¨-$\frac{n}{m}$£¬0£©£¬B£¨0£¬n£©£¬
¿ÉµÃ|AB|=$\sqrt{\frac{{n}^{2}}{{m}^{2}}+{n}^{2}}$£¬
ÓÉ|AB|2=$\frac{{n}^{2}}{{m}^{2}}$+n2£¾$\frac{{b}^{2}+{m}^{2}{a}^{2}}{{m}^{2}}$+b2+m2a2£¬
=a2+b2+$\frac{{b}^{2}}{{m}^{2}}$+m2a2¡Ýa2+b2+2ab=£¨a+b£©2£¬
¼´ÓÐ|AB|£¾a+b£®
µãÆÀ ±¾Ì⿼²éж¨ÒåµÄÀí½âºÍÔËÓ㬿¼²éÍÖÔ²µÄ²ÎÊý·½³ÌµÄÔËÓã¬ÒÔ¼°ºãµÈʽµÄ½áÂۺͻù±¾²»µÈʽµÄÔËÓ㬿¼²éÔËËãºÍÍÆÀíÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ìºþ±±ÏåÑôËÄÖиßÈýÆßÔÂÖÜ¿¼ÈýÊýѧ£¨ÎÄ£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ
ÈôË«ÇúÏß
µÄʵÖ᳤ÊÇÀëÐÄÂʵÄ2±¶£¬Ôòm= £®
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{2}$ | B£® | $\frac{\sqrt{2}}{2}$ | C£® | 1 | D£® | 0 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ìºþ±±ÏåÑôËÄÖиßÈýÆßÔÂÖÜ¿¼ÈýÊýѧ£¨Àí£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ
½«Á½¸öÊý
½»»»Ê¹µÃ
£¬ÏÂÃæÓï¾äÕýÈ·Ò»×éÊÇ£¨ £©
![]()
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com