14£®ÒÑÖªÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬¶ÔÓÚµãP£¨x0£¬y0£©¡¢Ö±Ïßl£ºax+by+c=0£¬ÎÒÃdzƦÄ=$\frac{a{x}_{0}+b{y}_{0}+c}{\sqrt{{a}^{2}+{b}^{2}}}$ΪµãP£¨x0£¬y0£©µ½Ö±Ïßl£ºax+by+c=0µÄ·½Ïò¾àÀ룮
£¨1£©ÉèÍÖÔ²$\frac{{x}^{2}}{4}$+y2=1ÉϵÄÈÎÒâÒ»µãP£¨x£¬y£©µ½Ö±Ïßl£ºx-2y=0£¬l£ºx+2y=0µÄ·½Ïò¾àÀë·Ö±ðΪ¦Ä1¡¢¦Ä2£¬Çó¦Ä1¦Ä2µÄȡֵ·¶Î§£®
£¨2£©ÉèµãE£¨-t£¬0£©¡¢F£¨t£¬0£©µ½Ö±Ïßl£ºxcos¦Á+2ysin¦Á-2=0µÄ·½³Ì¾àÀë·Ö±ðΪ¦Ç1¡¢¦Ç2£¬ÊÔÎÊÊÇ·ñ´æÔÚʵÊýt£¬¶ÔÈÎÒâµÄ¦Á¶¼ÓЦÇ1¦Ç2=1ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ötµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨3£©ÒÑÖªÖ±Ïßl£ºmx-y+n=0ºÍÍÖÔ²H£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬ÉèÍÖÔ²HµÄÁ½¸ö½¹µãF1£¬F2µ½Ö±ÏßlµÄ·½Ïò¾àÀë·Ö±ðΪ¦Ë1£¬¦Ë2£¬Âú×ã¦Ë1¦Ë2£¾b2£¬ÇÒÖ±ÏßlÓëxÖáµÄ½»µãΪA£¬ÓëyÖáµÄ½»µãΪB£¬ÊԱȽÏ|AB|µÄ³¤Óëa+bµÄ´óС£®

·ÖÎö £¨1£©ÉèP£¨x£¬y£©Îª£¨2cos¦Á£¬sin¦Á£©£¬0¡Ü¦Á£¼2¦Ð£¬ÓÉж¨ÒåÇóµÃ¦Ä1¡¢¦Ä2£¬ÔÙÓɶþ±¶½ÇµÄÓàÏÒ¹«Ê½£¬½áºÏÓàÏÒº¯ÊýµÄÖµÓò¼´¿ÉµÃµ½ËùÇó·¶Î§£»
£¨2£©ÓÉж¨Òå¿ÉµÃΪ¦Ç1¡¢¦Ç2£¬¼ÙÉè´æÔÚt£¬½áºÏºãµÈʽµÄ֪ʶ£¬Í¬½ÇµÄƽ·½¹ØÏµ£¬¿ÉµÃtµÄÖµ£»
£¨3£©ÓÉж¨Òå¿ÉµÃ¦Ë1£¬¦Ë2£¬´úÈë¦Ë1¦Ë2£¾b2£¬»¯¼òÕûÀí¿ÉµÃn2£¾b2+m2a2£¬ÔÙÓÉÁ½µãµÄ¾àÀ빫ʽ£¬ÇóµÃ|AB|2=$\frac{{n}^{2}}{{m}^{2}}$+n2£¬ÔËÓò»µÈʽµÄÐÔÖʺͻù±¾²»µÈʽ£¬¼´¿ÉµÃµ½´óС¹ØÏµ£®

½â´ð ½â£º£¨1£©ÉèP£¨x£¬y£©Îª£¨2cos¦Á£¬sin¦Á£©£¬0¡Ü¦Á£¼2¦Ð£¬
ÓÉÌâÒâ¿ÉµÃ¦Ä1=$\frac{x-2y}{\sqrt{1+4}}$£¬¦Ä2=$\frac{x+2y}{\sqrt{1+4}}$£¬
¼´ÓЦÄ1¦Ä2=$\frac{{x}^{2}-4{y}^{2}}{5}$=$\frac{4co{s}^{2}¦Á-4si{n}^{2}¦Á}{5}$=$\frac{4}{5}$cos2¦Á£¬
ÓÉ-1¡Ücos2¦Á¡Ü1£¬¿ÉµÃ¦Ä1¦Ä2µÄ·¶Î§ÊÇ[-$\frac{4}{5}$£¬$\frac{4}{5}$]£»
£¨2£©ÓÉÌâÒâ¿ÉµÃ¦Ç1=$\frac{-tcos¦Á-2}{\sqrt{co{s}^{2}¦Á+4si{n}^{2}¦Á}}$£¬¦Ç2=$\frac{tcos¦Á-2}{\sqrt{co{s}^{2}¦Á+4si{n}^{2}¦Á}}$£¬
¼ÙÉè´æÔÚʵÊýt£¬¶ÔÈÎÒâµÄ¦Á¶¼ÓЦÇ1¦Ç2=1ºã³ÉÁ¢£®
¼´ÓÐ$\frac{4-{t}^{2}co{s}^{2}¦Á}{co{s}^{2}¦Á+4si{n}^{2}¦Á}$=1£¬
¼´Îª4-t2cos2¦Á=cos2¦Á+4sin2¦Á=4-3cos2¦Á£¬
¼´ÓÐt2=3£¬½âµÃt=¡À$\sqrt{3}$£¬
¹Ê´æÔÚ£¬ÇÒt=¡À$\sqrt{3}$£»
£¨3£©ÉèµãF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬
ÓÉÌâÒâ¿ÉµÃ¦Ë1=$\frac{-mc+n}{\sqrt{1+{m}^{2}}}$£¬¦Ë2=$\frac{mc+n}{\sqrt{1+{m}^{2}}}$£¬
¦Ë1¦Ë2£¾b2£¬¼´Îª$\frac{{n}^{2}-{m}^{2}{c}^{2}}{1+{m}^{2}}$£¾b2£¬
¼´ÓÐn2-m2c2£¾b2+b2m2£¬
¼´Îªn2-m2£¨a2-b2£©£¾b2+b2m2£¬
»¯¼ò¿ÉµÃn2£¾b2+m2a2£¬
ÓÉÌâÒâ¿ÉµÃA£¨-$\frac{n}{m}$£¬0£©£¬B£¨0£¬n£©£¬
¿ÉµÃ|AB|=$\sqrt{\frac{{n}^{2}}{{m}^{2}}+{n}^{2}}$£¬
ÓÉ|AB|2=$\frac{{n}^{2}}{{m}^{2}}$+n2£¾$\frac{{b}^{2}+{m}^{2}{a}^{2}}{{m}^{2}}$+b2+m2a2£¬
=a2+b2+$\frac{{b}^{2}}{{m}^{2}}$+m2a2¡Ýa2+b2+2ab=£¨a+b£©2£¬
¼´ÓÐ|AB|£¾a+b£®

µãÆÀ ±¾Ì⿼²éж¨ÒåµÄÀí½âºÍÔËÓ㬿¼²éÍÖÔ²µÄ²ÎÊý·½³ÌµÄÔËÓã¬ÒÔ¼°ºãµÈʽµÄ½áÂۺͻù±¾²»µÈʽµÄÔËÓ㬿¼²éÔËËãºÍÍÆÀíÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®º¯Êýy=$\frac{\sqrt{5x+3}}{x}$µÄ¶¨ÒåÓòÇø¼äΪ{x|x¡Ý-$\frac{3}{5}$ÇÒx¡Ù0}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖª¼«µãÓëÔ­µãÖØºÏ£¬¼«ÖáÓëxÖáµÄÕý°ëÖáÖØºÏ£¬ÈôÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ£º¦Ñ=2sin¦È£¬ÇúÏßC2µÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x=2cos¦È}\\{y=\frac{2\sqrt{3}}{3}sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÇúÏßC1ÓëC2½»ÓÚM£¬NÁ½µã£¬ÇóM£¬NÁ½µã¼äµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªA£¬BΪÍÖÔ²$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1ÉϵÄÁ½¸ö¶¯µã£¬OÎª×ø±êÔ­µã£¬Âú×ã$\overrightarrow{OA}$•$\overrightarrow{OB}$=0£®
£¨1£©ÇóÖ¤£º$\frac{1}{|{\overrightarrow{OA}|}^{2}}$+$\frac{1}{|{\overrightarrow{OB}|}^{2}}$Ϊ¶¨Öµ£»
£¨2£©¶¯µãPÔÚÏß¶ÎABÉÏ£¬Âú×ã$\overrightarrow{OP}$•$\overrightarrow{AB}$=0£¬ÇóÖ¤£ºµãPÔÚ¶¨Ô²ÉÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ìºþ±±ÏåÑôËÄÖиßÈýÆßÔÂÖÜ¿¼ÈýÊýѧ£¨ÎÄ£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ

ÈôË«ÇúÏßµÄʵÖ᳤ÊÇÀëÐÄÂʵÄ2±¶£¬Ôòm= £®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=2£¬$\frac{{a}_{n+1}}{2}$=$\frac{{a}_{n}}{{a}_{n}+2}$£¬µÈ±ÈÊýÁÐ{bn}µÄ¹«±ÈΪ3£¬ÇÒb1+b3=10£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©¼Çcn=$\frac{3{b}_{n}}{{a}_{n}}$£¬ÇóÊýÁÐ{cn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÔڵȲîÊýÁÐ{an}ÖУ¬Èôa1=3£¬¹«²îd¡Ù0£¬Ôò$\lim_{n¡ú¡Þ}$$\frac{{a}_{1}+{a}_{3}+¡­+{a}_{2n-1}}{{a}_{2}+{a}_{4}+¡­+{a}_{2n}}$µÄÖµ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{\sqrt{2}}{2}$C£®1D£®0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÈçͼËùʾµÄ¡°8¡±×ÖÐÎÇúÏßÊÇÓÉÁ½¸ö¹ØÓÚxÖá¶Ô³ÆµÄ°ëÔ²ºÍÒ»¸öË«ÇúÏßµÄÒ»²¿·Ö×é³ÉµÄͼÐΣ¬ÆäÖÐÉϰë¸öÔ²ËùÔÚÔ²·½³ÌÊÇx2+y2-4y-4=0£¬Ë«ÇúÏßµÄ×ó¡¢ÓÒ¶¥µãA¡¢BÊǸÃÔ²ÓëxÖáµÄ½»µã£¬Ë«ÇúÏßÓë°ëÔ²ÏཻÓÚÓëxÖáÆ½ÐеÄÖ±¾¶µÄÁ½¶Ëµã£®
£¨1£©ÊÔÇóË«ÇúÏߵıê×¼·½³Ì£»
£¨2£©¼ÇË«ÇúÏßµÄ×ó¡¢ÓÒ½¹µãΪF1¡¢F2£¬ÊÔÔÚ¡°8¡±×ÖÐÎÇúÏßÉÏÇóµãP£¬Ê¹µÃ¡ÏF1PF2ÊÇÖ±½Ç£®
£¨3£©¹ýµãA×÷Ö±Ïßl·Ö±ð½»¡°8¡±×ÖÐÎÇúÏßÖÐÉÏ¡¢ÏÂÁ½¸ö°ëÔ²ÓÚµãM¡¢N£¬Çó|MN|µÄ×î´ó³¤¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ìºþ±±ÏåÑôËÄÖиßÈýÆßÔÂÖÜ¿¼ÈýÊýѧ£¨Àí£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

½«Á½¸öÊý½»»»Ê¹µÃ£¬ÏÂÃæÓï¾äÕýÈ·Ò»×éÊÇ£¨ £©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸