精英家教网 > 高中数学 > 题目详情
9.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤1}\\{\frac{2}{x},x>1}\end{array}\right.$,则f(f(3))=(  )
A.$\frac{13}{9}$B.3C.$\frac{2}{3}$D.$\frac{1}{5}$

分析 求出f(3)=$\frac{2}{3}$,从而f(f(3))=f($\frac{2}{3}$)=($\frac{2}{3}$)2+1,由此能求出f(f(3)).

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤1}\\{\frac{2}{x},x>1}\end{array}\right.$,
∴f(3)=$\frac{2}{3}$,
f(f(3))=$f(\frac{2}{3})$=($\frac{2}{3}$)2+1=$\frac{13}{9}$.
故选:A.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知{an}是各项为正数的等比数列,{bn}是等差数列,且a1=b1=1,b2+b3=2a3,a5-3b2=7.
(1)求{an}和{bn}的通项公式;
(2)设cn=anbn,n∈N*,求数列{cn}的前n项和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线l的参数方程为$\left\{\begin{array}{l}x=1+t\\ y=-1+t\end{array}$(t为参数,t∈R),则直线l的普通方程为(  )
A.x-y-2=0B.x-y+2=0C.x+y=0D.x+y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.$\int_0^1{({{x^2}+2})}dx$=(  )
A.$\frac{7}{2}$B.$\frac{7}{3}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设f(x)=a(x-5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线斜率为2.
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.下列说法中,正确的有④⑤.(写出正确的所有序号)
 ①用数学归纳法证明“1+2+22+…+2n+2=2n+3-1,在验证n=1时,左边的式子是1+2=22
②用数学归纳法证明$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+n}$>$\frac{13}{24}$(n∈N*)的过程中,由n=k推导到n=k+1 时,左边增加的项为$\frac{1}{2n+1}$+$\frac{1}{2n+2}$,没有减少的项;
 ③演绎推理的结论一定正确;
 ④($\root{3}{x}$+$\frac{1}{\sqrt{x}}$)18的二项展开式中,共有4个有理项;
⑤从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是$\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设f(x)=xeax,g(x)=kx+lnx+1
(1)a=-1,f(x)与g(x)均在x0处取到最大值,求x0及k的值;
(2)a=k=1时,求证:f(x)≥g(x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知三点A(3,1),B(-2,m),C(8,11)在同一条直线上,则实数m等于-9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列叙述中正确的有(2)(3)(4).(把你认为正确的序号全部写上)
(1)命题?x>0,ln(x+1)>0 的否定为?x0>0,ln(x0+1)<0
(2)若函数f(x)=(m2-1)xm是幂函数,且在(0,+∞)上是增函数,则实数 m=$\sqrt{2}$
(3)函数y=3x的图象与函数y=-3-x的图象关于原点对称;
(4)若函数f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,则f(x)+f(1-x)=1
(5)函数f(x)=log${\;}_{\frac{1}{2}}$(x2-2ax+3),若f(x)值域为R,则实数a的取值范围是(-$\sqrt{3}$,$\sqrt{3}$)

查看答案和解析>>

同步练习册答案