精英家教网 > 高中数学 > 题目详情
15.设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列$\left\{{\sqrt{S_n}}\right\}$是公差为1的等差数列,数列{bn}满足b1=$\frac{1}{2}$,bn+1=$\frac{n+1}{2n}{b_n}$,记数列{bn}的前n项和为Tn
(1)求数列{an}、{bn}的通项公式及前n项和;
(2)若不等式$\frac{{({S_n}+\sqrt{S_n})(2-{T_n})}}{n+2}$≤λ恒成立,求实数λ的取值范围.

分析 (1)由题意可知:$\sqrt{S_n}=\sqrt{a_1}+(n-1)$,结合已知,列方程 求得a1和d,进而求得Sn,再利用an和Sn的关系求得an,$\frac{{{b_{n+1}}}}{n+1}=\frac{1}{2}•\frac{b_n}{n}$,${b_n}=n{(\frac{1}{2})^n}$,利用“错位相减法”,即可求得${T_n}=2-\frac{n+2}{2^n}$;
(2)式$\frac{{({S_n}+\sqrt{S_n})(2-{T_n})}}{n+2}$=$\frac{{n}^{2}+2}{{2}^{n}}$,令$f(n+1)-f(n)=\frac{{{{(n+1)}^2}+(n+1)}}{{{2^{n+1}}}}-\frac{{{n^2}+n}}{2^n}=\frac{{-{n^2}+n+2}}{{{2^{n+1}}}}=-\frac{(n-2)(n+1)}{{{2^{n+1}}}}$,根据函数的函数的零点定理得函数的最大值,$f{(n)_{max}}=f(2)=f(3)=\frac{3}{2}$,求得$λ≥\frac{3}{2}$.

解答 解:(1)∵$\left\{{\sqrt{S_n}}\right\}$是公差为1的等差数列,
∴$\sqrt{S_n}=\sqrt{a_1}+(n-1)$,
∵2a2=a1+a3
3a2=a1+a2+a3=S3
3(S2-S1)=S3
$3[{{{({\sqrt{a_1}+1})}^2}-{{({\sqrt{a{\;}_1}})}^2}}]={({\sqrt{a_1}+2})^2}$,
$3(2\sqrt{a_1}+1)=({a_1}+4\sqrt{a_1}+4)$,
∴${a_1}-2\sqrt{a{\;}_1}+1=0$,
∴a1=1,
∴$\sqrt{S_n}=n$,${S_n}={n^2}$
an=2n-1(n∈N*),
$\frac{{{b_{n+1}}}}{n+1}=\frac{1}{2}•\frac{b_n}{n}$,
∵${b_1}=\frac{1}{2}$,
∴$\frac{b_n}{n}={(\frac{1}{2})^n}$,
∴${b_n}=n{(\frac{1}{2})^n}$,
{bn}的通项公式及前n项和Tn=$\frac{1}{2}$+$\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$,
$\frac{1}{2}$Tn=$\frac{1}{{2}^{2}}$+$\frac{2}{{2}^{3}}$+$\frac{3}{{2}^{4}}$+…+$\frac{n}{{2}^{n+1}}$,
$\frac{1}{2}$Tn=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$,
=1-$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$,
可得:${T_n}=2-\frac{n+2}{2^n}$,
(2)令$f(n)=\frac{{({S_n}+\sqrt{S_n})(2-\sqrt{n})}}{n+2}=\frac{{{n^2}+n}}{2^n}$,
$f(n+1)-f(n)=\frac{{{{(n+1)}^2}+(n+1)}}{{{2^{n+1}}}}-\frac{{{n^2}+n}}{2^n}=\frac{{-{n^2}+n+2}}{{{2^{n+1}}}}=-\frac{(n-2)(n+1)}{{{2^{n+1}}}}$,
∴n≥3时  f(n+1)-f(n)<0,
当n<2时  f(n+1)-f(n)>0,
∴f(1)<f(2)=f(3)>f(4)>f(5)>…
∴$f{(n)_{max}}=f(2)=f(3)=\frac{3}{2}$,
∴$λ≥\frac{3}{2}$.

点评 本题主要考查等差和等比数列的通项公式及前n项和公式,“错位相减法”求前n项和公式,考查不等成立,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知A={x|-3<x<5,x∈Z},B={x||x|≤2,x∈Z},求A∩B,A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)可导,则$\lim_{△x→0}\frac{f(1-△x)-f(1)}{2△x}$=(  )
A.-2f'(1)B.$\frac{1}{2}f'(1)$C.$-\frac{1}{2}f'(1)$D.$f({\frac{1}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,角A,B,C的对边分别是a,b,c,若a=20,b=10,B=31°,则△ABC解的情况是(  )
A.无解B.有一解C.有两解D.有无数个解

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设a>0,b>0,则以下不等式中不恒成立是(  )
A.|x-1|-|x+5|≤6B.a3+b3≥2ab2C.a2+b2+2≥2a+2bD.$\sqrt{|a-b|}≥\sqrt{a}-\sqrt{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$\overrightarrow a,\overrightarrow b,\overrightarrow c$是同一平面内的三个向量,其中$\overrightarrow a=(1,2)$.
(1)若|$\overrightarrow b$|=3$\sqrt{5}$,且$\overrightarrow a$∥$\overrightarrow b$,求$\overrightarrow b$的坐标.
(2)若|$\overrightarrow c$|=$\sqrt{10}$,且2$\overrightarrow{a}$+$\overrightarrow{c}$与4$\overrightarrow a-3\overrightarrow c$垂直,求$\overrightarrow a$与$\overrightarrow c$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温.
气温(℃)141286
用电量(度)22263438
(I)求线性回归方程;(参考数据:$\sum_{i=1}^4{x_i}{y_i}=1120,\sum_{i=1}^4{x_i^2=440}$)
(II)根据(1)的回归方程估计当气温为10℃时的用电量.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\overrightarrow a$=($\sqrt{3}$sinx,m+cosx),$\overrightarrow b$=(cosx,-m+cosx),且f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求函数的解析式;   
(2)当x∈[-$\frac{π}{6}$,$\frac{π}{3}}$]时,求此时函数f(x)的最大值,并求出相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知二项式 ($\frac{1}{2}$x+2)n
(1)当n=4时,写出该二项式的展开式;
(2)若展开式的前三项的二项式系数的和等于79,则展开式中第几项的二项式系数最大?

查看答案和解析>>

同步练习册答案