分析 (1)当n=4时,($\frac{1}{2}$x+2)n =($\frac{1}{2}$x+2)4,按照二项式定理展开可得结论.
(2)由题意可得${C}_{n}^{0}$+${C}_{n}^{1}$+${C}_{n}^{2}$=79,求得n=12,再根据二项式系数的性质,可得第7项(r=6)的二项式系数最大.
解答 解:(1)当n=4时,($\frac{1}{2}$x+2)n =($\frac{1}{2}$x+2)4=$\frac{{x}^{4}}{16}$+x3+6x2+16x+16.
(2)若展开式的前三项的二项式系数的和等于79,
则${C}_{n}^{0}$+${C}_{n}^{1}$+${C}_{n}^{2}$=1+n+$\frac{n(n-1)}{2}$=79,求得n=12,
再根据二项式系数的性质,第7项(r=6)的二项式系数最大.
点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 1 | 2 | 3 | 4 | 5 |
| y | 7 | 6 | 5 | 4 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2x+y-1=0 | B. | x-2y+7=0 | C. | x-2y-5=0 | D. | 2x+y-5=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 公平,每个班被选到的概率都为$\frac{1}{12}$ | B. | 公平,每个班被选到的概率都为$\frac{1}{6}$ | ||
| C. | 不公平,6班被选到的概率最大 | D. | 不公平,7班被选到的概率最大 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com