分析 (I)利用周期为4×$\frac{π}{4}$=π计算ω,根据f($\frac{2π}{3}$)=-1和φ的取值范围计算φ;
(II)使用五点法作图;
(III)根据x的范围得出2x-$\frac{π}{3}$的范围,利用余弦函数的图象与性质得出f(x)的最值.
解答 解:(Ⅰ)∵函数f(x)的一个零点与之相邻的对称轴之间的距离为$\frac{π}{4}$,
∴f(x)的周期T=π,即$\frac{2π}{ω}=π$,∴ω=2.
又∵x=$\frac{2π}{3}$时f(x)有最小值,
∴f($\frac{2π}{3}$)=cos($\frac{4π}{3}$+φ)=-1,
∴$\frac{4π}{3}$+φ=2kπ+π,解得φ=2kπ-$\frac{π}{3}$,
∵|φ|<$\frac{π}{2}$,
∴φ=-$\frac{π}{3}$,
∴f(x)=cos(2x-$\frac{π}{3}$).
(Ⅱ)作出函数图象如下:![]()
(Ⅲ)∵x∈[$\frac{π}{4}$,$\frac{5π}{6}$],
∴$\frac{π}{6}≤2x-\frac{π}{3}≤\frac{4π}{3}$,
∴当2x-$\frac{π}{3}$=π时,f(x)取得最小值-1,当2x-$\frac{π}{3}$=$\frac{π}{6}$时,f(x)取得最大值$\frac{\sqrt{3}}{2}$,
∴f(x)的值域是[-1,$\frac{\sqrt{3}}{2}$].
点评 本题考查了三角函数解析式的解法,余弦函数的图象与性质,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2x+y+2=0 | B. | 3x-y+3=0 | C. | x+y+1=0 | D. | x-y+1=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-3) | B. | (3,+∞) | C. | (-3,1) | D. | (-1,1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com