精英家教网 > 高中数学 > 题目详情
20.已知cosx=-$\frac{3}{5}$,x∈(${\frac{π}{2}$,π).
(Ⅰ)求$sin(x+\frac{π}{3})$的值;
(Ⅱ)求$sin({2x+\frac{π}{6}})$的值.

分析 (Ⅰ)由已知利用同角三角函数基本关系式可求sinx的值,进而利用两角和的正弦函数公式,特殊角的三角函数值即可化简求值得解.
(Ⅱ)由(Ⅰ)利用倍角公式可求sin2x,cos2x的值,进而利用两角和的正弦函数公式及特殊角的三角函数值即可化简求值.

解答 解:(Ⅰ)∵$cosx=-\frac{3}{5},x∈({-\frac{π}{2},π}),\\∴sinx=\frac{4}{5}…(2分)$
$\begin{array}{l}∴sin({x+\frac{π}{3}})\\=sinxcos\frac{π}{3}+cosxsin\frac{π}{3}…(4分)\\=\frac{4}{5}×\frac{1}{2}-\frac{3}{5}×\frac{{\sqrt{3}}}{2}\\=\frac{{4-3\sqrt{3}}}{10}…(6分)\end{array}$
(Ⅱ)由(Ⅰ)知$cosx=-\frac{3}{5},sinx=\frac{4}{5}$,
$\begin{array}{l}∴sin2x=2sinxcosx=-\frac{24}{25}…(8分)\\ cos2x=2{cos^2}x-1=-\frac{7}{25}…(10分)\\∴sin({2x+\frac{π}{6}})\\=sin2xcos\frac{π}{6}+cos2xsin\frac{π}{6}\\=-\frac{24}{25}×\frac{{\sqrt{3}}}{2}-\frac{7}{25}×\frac{1}{2}\\=-\frac{{24\sqrt{3}+7}}{50}…(14分)\end{array}$

点评 本题主要考查了同角三角函数基本关系式,两角和的正弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知角x的终边上一点P(-4,3),则$\frac{{cos(\frac{π}{2}+x)sin(-π-x)}}{{cos(\frac{π}{2}-x)sin(\frac{9π}{2}+x)}}$的值为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.平面直角坐标系中,过原点的直线l与曲线y=ex交于不同的A,B两点,分别过点A,B作y轴的平行线与曲线y=$\sqrt{2}$lnx交于C,D两点,则直线CD的斜率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知复数z=x+yi,x,y∈R,且|z-3|=1,则x2+y2+4x+1的最大值为33.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,设A是单位圆和x轴正半轴的交点,P、Q是单位圆上的两点,O是坐标原点,∠AOP=$\frac{π}{6}$,∠AOQ=α,α∈[0,π).
(1)若Q($\frac{3}{5}$,$\frac{4}{5}$),求cos(α+$\frac{π}{4}$)的值;
(2)设函数f(α)=$\overrightarrow{OP}$•$\overrightarrow{OQ}$,求f(α)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若函数f(x)=cos(ωx+φ),ω>0,|φ|<$\frac{π}{2}$)的一个零点与之相邻的对称轴之间的距离为$\frac{π}{4}$,且x=$\frac{2π}{3}$时f(x)有最小值.
(Ⅰ)求f(x)的解析式;
(Ⅱ)请直接在给定的坐标系中作出函数f(x)在[0,π]上的图象;(注:作图过程可以省略)
(Ⅲ)若x∈[$\frac{π}{4}$,$\frac{5π}{6}$],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,设定点A(a,a),P是曲线C:y=$\frac{1}{x}$(x>0)上一动点
(1)求证:曲线C在点P处的切线与坐标轴围成的三角形面积为定值;
(2)当点P,A之间的最短距离为2$\sqrt{2}$时,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x3-mx,直线l1∥l2,l1与函数f(x)图象切于点A、交于点B,l2与函数f(x)图象切于点C、交于点D.
(1)求证:四边形ABCD为平行四边形;
(2)若四边形ABCD为矩形,求m的取值范围;
(3)若四边形ABCD为正方形,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a,b∈R+,$\frac{2}{a}+\frac{3}{b}$=2.求ab的最大值,a+b的最小值,2a+3b的最小值,并取得最值时相应的a,b的值.

查看答案和解析>>

同步练习册答案