分析 由条件利用任意角的三角函数的定义,诱导公式,求得要求式子的值.
解答 解:∵角x的终边上一点P(-4,3),
∴sinx=$\frac{3}{5}$,cosx=$\frac{-4}{5}$=-$\frac{4}{5}$,
则$\frac{{cos(\frac{π}{2}+x)sin(-π-x)}}{{cos(\frac{π}{2}-x)sin(\frac{9π}{2}+x)}}$=$\frac{-sinx•sinx}{sinx•cosx}$=-$\frac{sinx}{cosx}$=$\frac{3}{4}$,
故答案为:$\frac{3}{4}$.
点评 本题主要考查任意角的三角函数的定义,诱导公式,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{10}$ | B. | $\frac{\sqrt{10}}{3}$ | C. | $\frac{2\sqrt{10}}{5}$ | D. | $\frac{\sqrt{6}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | [0,+∞) | C. | (0,+∞) | D. | (-∞,0] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2x+y+2=0 | B. | 3x-y+3=0 | C. | x+y+1=0 | D. | x-y+1=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({1,\sqrt{2}}]$ | B. | $({0,\sqrt{2}}]$ | C. | $({1,\sqrt{2}})$ | D. | $({0,\sqrt{2}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[1-\sqrt{5},1+\sqrt{5}]$ | B. | $[1-\sqrt{5},-1]$ | C. | $[-2,1+\sqrt{5}]$ | D. | $[-\sqrt{2},-1]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com