精英家教网 > 高中数学 > 题目详情
已知函数f(x)=cos2x+sinxcosx.
(1)求函数f(x)的最大值;
(2)在△ABC中,AB=AC=3,角A满足f(
A
2
+
π
8
)=1,求△ABC的面积.
考点:三角函数中的恒等变换应用,正弦定理
专题:三角函数的求值
分析:(1)将函数进行化简,利用三角函数的图象和性质即可求函数f(x)的最大值;
(2)根据三角形的面积公式即可得到结论.
解答: 解:(1)f(x)=cos2x+sinxcosx=
1+cos2x
2
+
1
2
sin2x

=
2
2
(
2
2
sin2x+
2
2
cos2x)+
1
2
=
2
2
sin(2x+
π
4
)+
1
2

-1≤sin(2x+
π
4
)≤1

∴f(x)的最大值为
2
2
+
1
2
.    
(2)∵f(
A
2
+
π
8
)=1
,∴
2
2
sin[2(
A
2
+
π
8
)+
π
4
]+
1
2
=1

即   sin(A+
π
2
)=
2
2
,∴cosA=
2
2
. 
∵A为△ABC的内角,∴sinA=
2
2
.  
∵AB=AC=3,
∴△ABC的面积S=
1
2
×AB×AC×sinA=
9
2
4
点评:本题主要考查是三角形的面积的计算以及三角函数的最值,利用三角函数的图象和性质是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,若a2-c2=2b,
tanA
tanC
=3,则b等于(  )
A、3B、4C、6D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0),过M(2,
2
)、N(
6
,1)两点,O为坐标原点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若直线y=kx+4(k>0)与圆x2+y2=
8
3
相切,并且与椭圆E相交于两点A、B,求证:
OA
OB

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列数列{an}的通项公式an=(-1)n(2n-1)(n∈N*),Sn为其前n项和
(1)求S1,S2,S3,S4的值;
(2)猜想Sn的表达式,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2ax+4.
(1)若函数f(x)满足f(1+x)=f(1-x),求函数在x∈[-2,2]的值域;
(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+1的图象上方,试确定实数a的范围.
(3)若方程f(x)=0在[-1,1]上有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,S为该三角形的面积,且2sinB-2sin2B-cos2B=
3
-1.
(Ⅰ)求角B的大小;
(Ⅱ)若B为锐角,a=6,S=6
3
,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx),其中常数ω>0,令ω=2,将函数y=f(x)的图象向左平移个
π
6
单位,再向上平移1个单位,得到函数y=g(x)的图象,若函数y=g(z)在区间[m,m+10π](-
π
4
<m<
12
)上有20个零点:a1,a2,a3,…,a20,求a1+a2+a3+…+a20的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2•eax(a为小于0的常数).
(Ⅰ)当a=-1时,求函数f(x)的单调区间;
(Ⅱ)存在x∈[1,2]使不等式f(x)≥
4
e4
成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市的教育研究机构对全市高三学生进行综合素质测试,随机抽取了100名学生的成绩,得到如图所示的成绩频率分布直方图.
(Ⅰ)估计这100名学生中综合素质成绩在80分以上的人数;
(Ⅱ)若评定成绩不低于80分为优秀.视频率为概率,从全市学生中任选3名学生(看作有放回的抽样),变量ξ表示3名学生中成绩优秀的人数,求变量ξ的分布列及期望E(ξ).

查看答案和解析>>

同步练习册答案