精英家教网 > 高中数学 > 题目详情

【题目】如图所示,有两个独立的转盘()、().两个图中三个扇形区域的圆心角分别为.用这两个转盘进行玩游戏,规则是:依次随机转动两个转盘再随机停下(指针固定不会动,当指针恰好落在分界线时,则这次结果无效,重新开始),记转盘()指针所对的数为,转盘()指针所对的数为,(),求下列概率:

(1)

(2)

【答案】(1);(2) .

【解析】试题分析:(1)本题属于几何概型,其中”包含的基本事件为指针所对的数为1”,根据几何概型概率求法求解即可;(2)“”包含“”和“”两种情况,根据互斥事件的概率和几何概型求解

试题解析:

(1)”表示指针所对的数为1”,由几何概型概率公式可得

(2)由题意得”包含“”和“”两种情况

由几何概型概率公式可得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为A,右焦点为F,过点F的直线交椭圆于BC两点.

(1)求该椭圆的离心率;

(2)设直线ABAC分别与直线x=4交于点MN,问:x轴上是否存在定点P使得MPNP?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆与双曲线有相同的焦点,椭圆的一个短轴端点为,直线与双曲线的一条渐近线平行,若椭圆于双曲线的离心率分别为,则的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, // , 点边的中点, 将△沿折起,使平面⊥平面,连接, , , 得到如

图所示的空间几何体.

(Ⅰ)求证: ⊥平面

(Ⅱ)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图).

(1)分别写出两种产品的收益与投资额的函数关系式;
(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= + 的定义域为(
A.[﹣2,0)∪(0,2]
B.(﹣1,0)∪(0,2]
C.[﹣2,2]
D.(﹣1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从个招标问题中随机抽取个问题,已知这个招标问题中,甲公司可正确回答其中的道題目,而乙公司能正确回答毎道题目的概率均为,甲、乙两家公司对每题的回答都是相互独立,互不影响的.

(1)求甲、乙两家公司共答对道题目的概率;

(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面为平行四边形,且,, 分别为中点,过作平面分别与线段相交于点.

(Ⅰ)在图中作出平面使面 (不要求证明);

(II)若,在(Ⅰ)的条件下求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中有这样一则问题:“今有良马与弩马发长安,至齐,齐去长安三千里,良马初日行一百九十三里,日增一十三里;弩马初日行九十七里,日减半里,良马先至齐,复还迎弩马.”则现有如下说法:

①弩马第九日走了九十三里路;

②良马前五日共走了一千零九十五里路;

③良马和弩马相遇时,良马走了二十一日.

则以上说法错误的个数是( )个

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步练习册答案