精英家教网 > 高中数学 > 题目详情
13.向量$\overrightarrow{a}$=(m,2),$\overrightarrow{b}$=(n,-1),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则mn=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

分析 由向量垂直数量积为0 得到关于mn的等式.

解答 解:因为向量$\overrightarrow{a}$=(m,2),$\overrightarrow{b}$=(n,-1),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,所以$\overrightarrow{a}•\overrightarrow{b}$=0,即mn-2=0,所以mn=2;
故选:C.

点评 本题考查了向量垂直,数量积为0.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.函数f(x)=$\frac{\sqrt{2x+1}}{x-3}$的定义域为(  )
A.{x|x≥-$\frac{1}{2}$}B.{x|x>-$\frac{1}{2}$且x≠3}C.{x|x≥-$\frac{1}{2}$且x≠3}D.{x|x≠3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布表和频率分布直方图如下,回答下列问题:
分组人数频率
[39.5,49.5)a0.10
[49.5,59.5)9x
[59.5,69.5)b0.15
[69.5,79.5)180.30
[79.5,89.5)15y
[89.5,99.5]30.05
(1)分别求出a,b,x,y的值,并补全频率分布直方图;
(2)估计这次环保知识竞赛平均分;
(3)若从所有参加环保知识竞赛的学生中随机抽取一人采访,抽到的学生成绩及格的概率有多大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知线段PQ的中点为M(0,4),若点P在直线x+y-2=0上运动,则点Q的轨迹方程是(  )
A.x+y-6=0B.x+y+6=0C.x-y-2=0D.x-y+2=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将编号为1、2、3、4的四个小球任意地放入A、B、C、D四个小盒中,每个盒中放球的个数不受限制,恰好有一个盒子是空的概率为(  )
A.$\frac{9}{16}$B.$\frac{1}{4}$C.$\frac{3}{4}$D.$\frac{7}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设P是曲线y=$\sqrt{1{-x}^{2}}$上的点,若对曲线y=x+$\frac{a}{x}$(a>0,x>0)上的任意一点Q,恒有|PQ|≥1,则a的取值范围是(  )
A.[$\sqrt{2}$-1,+∞)B.[2$\sqrt{2}$-2,+∞)C.[$\frac{4}{5}$,+∞)D.(0,2$\sqrt{2}$-2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数$y=cos(x+\frac{π}{12})$的图象的一条对称轴的方程是(  )
A.$x=\frac{5π}{12}$B.x=$\frac{π}{6}$C.x=$\frac{π}{12}$D.x=-$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.为了得到函数$y={(\frac{1}{3})^x}$的图象,可以把函数$y=3×{(\frac{1}{3})^x}$的图象(  )
A.向左平移1个单位B.向右平移1个单位C.向左平移3个单位D.向右平移3个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,(2$\overrightarrow{a}$-3$\overrightarrow{b}$)•(2$\overrightarrow{a}$+$\overrightarrow{b}$)=61
(1)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ;
(2)求向量$\overrightarrow{a}$+$\overrightarrow{b}$在向量$\overrightarrow{b}$方向上的投影.

查看答案和解析>>

同步练习册答案