精英家教网 > 高中数学 > 题目详情
18.设A={x|x≥1或x≤-3},B={x|-4<x<0}求:
(2)A∩B,A∪B
(2)A∪(∁RB)

分析 (1)由A与B,求出两集合的交集、并集即可;
(2)由全集R及B,求出B的补集,找出A与B补集的并集即可.

解答 解:(1)A={x|x≥1或x≤-3},B={x|-4<x<0},
∴A∩B={x|-4<x≤-3},A∪B={x|x<0,或x≥1};
(2)∵全集为R,
∴∁RB={x|x≤-4或x≥0},
则A∪(∁RB)={x|x≤-3或x≥0}.

点评 此题考查了交、并、补集的混合运算,以及交集及其运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,以M(-a,b),N(a,b),F2、F1为顶点的等腰梯形的高为1,面积为2+$\sqrt{3}$.
(1)求椭圆C的方程;
(2)若直线y=k(x-1)(k≠0)与x轴相交于点P,与椭圆C相交于A,B两点,线段AB的垂直平分线与x轴相交于点Q,求$\frac{|AB|}{|PQ|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.直线-x+$\sqrt{3}$y-6=0的倾斜角是30°,在y轴上的截距是2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,且经过点A(0,-1).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)如果过点$B(0,\frac{3}{5})$的直线与椭圆交于M,N两点(M,N点与A点不重合),求证:△AMN为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若$-\frac{π}{8}<θ<0$,则sinθ,cosθ,tanθ的大小关系(  )
A.sinθ<cosθ<tanθB.sinθ<tanθ<cosθC.tanθ<sinθ<cosθD.以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线x+$\sqrt{3}$y-a=0的倾斜角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)为定义域D上的单调函数,且存在区间[a,b]⊆D(其中a<b),使得当x∈[a,b]时,f(x)的取值范围恰为[a,b],则称函数f(x)是D上的正函数.若函数g(x)=x2-m是(-∞,0)上的正函数,则实数m的取值范围为(  )
A.$(-1,-\frac{3}{4})$B.$(-\frac{3}{4},0)$C.$(\frac{3}{4},1)$D.$(1,\frac{5}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.威力实施“爱的教育”实践活动,宇华教育集团决定举行“爱在宇华”教师演讲比赛.焦作校区决定从高中部、初中部、小学部和幼教部这四个部门选出12人组成代表队代表焦作校区参赛,选手来源如下表:
部门高中部初中部小学部幼教部
人数4422
焦作校区选手经过出色表现获得冠军,现要从中选出两名选手代表冠军队发言.
(1)求这两名队员来自同一部门的概率;
(2)设选出的两名选手中来自高中部的人数为ξ,求随机变量ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于20$\sqrt{3}$

查看答案和解析>>

同步练习册答案