精英家教网 > 高中数学 > 题目详情
某空间几何体的三视图如图所示,则该几何体的体积是(  )
A、4B、5C、6D、7
考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:由三视图可知该几何体是一棱长为2的正方体切去两个三棱锥,其底面为俯视图中的两个直角三角形,高为2.利用柱体、锥体的体积公式计算即可.
解答: 解:由三视图可知该几何体是一棱长为2的正方体切去两个三棱锥,其两个三棱锥的底面为俯视图中的两个直角三角形,高为2,所以V=2×2×2-
1
3
×(
1
2
×1×1+
1
2
×2×1)×2
=7.
故选:D.
点评:本题考查三视图求几何体的体积,考查计算能力,空间想象能力,三视图复原几何体是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等比数列{an}的前n项和为Sn=k•2n-1+1,
(1)求S5的值;
(2)若数列{bn}满足bn=log2|an|,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

从半径R的球内接正方体的8个顶点及球心这9个点中任取2个点,则这两个点间的距离小于或等于半径的概率为(  )
A、
1
9
B、
2
9
C、
4
9
D、
5
9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两圆O1,O2内切,圆O1的半径为1,圆O2的半径为3,动圆M与圆01外切于点Q,且与圆O2内切于点P.
(1)建立适当的直角坐标系,求动圆圆心M的轨迹方程
(2)求过点(0,
3
),倾斜角为
π
4
的直线被(1)中轨迹所截得的线段长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD与四边形ADMN都为正方形,AN⊥AB,F为线段BN的中点,E为线段BC上的动点.
(1)当E为线段BC中点,求证:NC∥平面AEF;
(2)求证:平面AEF⊥平面BCMN;
(3)求平面AMF与平面ABCD所成(锐二面角)角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos(α-
π
4
)=
1
2
,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

我校同学设计了一个如图所示的“蝴蝶形图案”(阴影区域)来庆祝数学学科节目的成功举办,其中AC,BD是过抛物线C的焦点F的两条弦,且F(0,1),
AC
BD
=0,点E为y轴上一点,记∠EFA=a,其中a为锐角.
(1)求抛物线的方程;
(2)当“蝴蝶形图案”的面积最小时,求a的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

某四棱锥的三视图如图所示,该四棱锥的表面积是(  )
A、16+16
2
B、16+32
2
C、48
D、32

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的三视图如图所示,则该几何体的体积等于(  )
A、
160
3
B、160
C、64+32
2
D、60

查看答案和解析>>

同步练习册答案