精英家教网 > 高中数学 > 题目详情
7.在标号为0,1,2的三张卡片中随机抽取两张卡片,则这两张卡片上的标号之和为奇数的概率是$\frac{2}{3}$.

分析 根据题意可得:所有的基本事件有3个,再计算出符合条件的事件数为2个,进而结合古典概率的计算公式得到答案.

解答 解:根据题意可得此概率模型是古典概率模型,
从3张卡片中随机抽取2张共有的取法有C32=3种,
取出的2张卡片上的数字之和为奇数的取法为0,1与1,2,2种,
所以根据古典概率的计算公式可得:取出的2张卡片上的数字之和为奇数的概率为$\frac{2}{3}$.
故答案为:$\frac{2}{3}$.

点评 本题主要考查古典概率模型及其计算公式,即如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=$\frac{m}{n}$,此题属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.观察等式:
sin210°+cos240°+sin10°cos40°=a
sin215°+cos245°+sin15°cos45°=a
sin220°+cos250°+sin20°cos50°=a
sin225°+cos255°+sin25°cos55°=a
(1)请根据以上等式规律,用特殊值求出a的值;
(2)归纳出一般的结论并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知m,4,n是等差数列,那么${(\sqrt{2})^m}•{(\sqrt{2})^n}$=16;mn的最大值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.二项式${(2x-\frac{1}{{\sqrt{x}}})^6}$的展开式中常数项为(  )
A.160B.-160C.60D.-60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列说法正确的是(  )
A.“p∨q为真”是“p∧q为真”的充分不必要条件
B.若数据x1,x2,x3,…,xn的方差为1,则2x1,2x2,2x3,…,2xn的方差为2
C.命题“存在x∈R,x2+x+2015>0”的否定是“任意x∈R,x2+x+2015<0”
D.在区间[0,π]上随机取一个数x,则事件“sinx+cosx≥$\frac{\sqrt{6}}{2}$”发生的概率为$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知正实数x,y满足x+3y=1,则$\frac{1}{x}+\frac{3x}{y}$的最小值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若(1+ai)i=2-bi,其中a、b∈R,i是虚数单位,则|a+bi|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\frac{lnx}{x}$-x2+2ex-k有且只有一个零点,则k的值为(  )
A.e+$\frac{1}{{e}^{2}}$B.e+$\frac{1}{e}$C.e2+$\frac{1}{e}$D.e2+$\frac{1}{{e}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,已知圆O半径是3,PAB和PCD是圆O的两条割线,且PAB过O点,若PB=10,PD=8,给出下列四个结论:
①CD=3;
②BC=5;
③BD=2AC;
④∠CBD=30°.
则所有正确结论的序号是(  )
A.①③B.①④C.①②③D.①③④

查看答案和解析>>

同步练习册答案