精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=lnx-ax2,且函数f(x)在点(2,f(2))处的切线的斜率是$-\frac{3}{2}$,则a=$\frac{1}{2}$.

分析 求函数的导数,利用导数的几何意义建立方程关系进行求解即可.

解答 解:∵f(x)在点(2,f(2))处的切线的斜率是$-\frac{3}{2}$,
∴$f'(2)=-\frac{3}{2}$,又$f'(x)=\frac{1}{x}-2ax$,
∴$-\frac{3}{2}=\frac{1}{2}-2a×2$,得$a=\frac{1}{2}$.
故答案为:$\frac{1}{2}$

点评 本题主要考查导数的应用,求函数的导数,利用导数的几何意义建立方程关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知|$\overrightarrow{a}$|=2与|$\overrightarrow{b}$|=4,在下列条件下求$\overrightarrow{a}$•$\overrightarrow{b}$:
(1)$\overrightarrow{a}$∥$\overrightarrow{b}$;
(2)$\overrightarrow{a}$⊥$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.判断下列各式的符号:
(1)sinθ•cosθ($\frac{π}{2}$<θ<π);
(2)$\frac{sinθ}{cosθ}$(2π<θ<$\frac{5π}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x-3|.
(Ⅰ)若不等式f(x-1)+f(x)<a的解集为空集,求实数a的取值范围;
(Ⅱ)若|a|<1,|b|<3,且a≠0,判断$\frac{f(ab)}{|a|}$与$f(\frac{b}{a})$的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知正方体的不在同一表面的两个顶点A(-1,2,-1),B(3,-2,3),则正方体的棱长等于(  )
A.4B.2C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:
A组:10,11,12,13,14,15,16,;
B组:12,13,15,16,17,14,a.
假设所有病人的康复时间相互独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.
(1)如果a=11,求B组的7位病人康复时间的平均数和方差;
(2)如果a=14,设甲与乙的康复时间都低于15,记甲的康复时间与乙的康复时间的差的绝对值X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知曲线x2+y2=2(x≥0,y≥0)和x+y=$\sqrt{2}$围成的封闭图形为Г,则图形Г绕y轴旋转一周后所形成几何体的表面积为(  )
A.$\frac{2\sqrt{2}}{3}$B.(8+4$\sqrt{2}$)πC.(8+2$\sqrt{2}$)πD.(4+2$\sqrt{2}$)π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.椭圆E中心在原点,以抛物线y2=4x的焦点为其一个焦点,且E经点P($\frac{4}{3}$,$\frac{1}{3}$),则椭圆短轴长为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{{b}^{2}}$=1(0<b<3)的左右焦点分别为F1(-c,0),F2(c,0),过点F1且不与x轴重合的直线l与椭圆相交于A,B两点.当直线l垂直x轴时,|AB|=$\frac{8}{3}$.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求△ABF2内切圆半径的最大值.

查看答案和解析>>

同步练习册答案