精英家教网 > 高中数学 > 题目详情
函数f(x)=|x|和g(x)=x(2-x)的递增区间依次是(  )
A.(-∞,0],(-∞,1]B.(-∞,0],[1,+∞)
C.[0,+∞),(-∞,1]D.[0,+∞),[1,+∞)
C
f(x)=|x|=
∴函数f(x)的递增区间是[0,+∞).
g(x)=x(2-x)=-x2+2x=-(x-1)2+1,
对称轴是直线x=1,a=-1<0.
∴函数g(x)的单调递增区间为(-∞,1].
故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=a为常数且a∈(0,1).
(1)当a=时,求f
(2)若x0满足f[f(x0)]=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2
(3)对于(2)中的x1,x2,设A(x1,f[f(x1)]),B(x2,f[f(x2)]),C(a2,0),记△ABC的面积为S(a),求S(a)在区间[]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=(ax2+x)ex,其中e是自然数的底数,a∈R.
(1)当a<0时,解不等式f(x)>0;
(2)若f(x)在[-1,1]上是单调函数,求a的取值范围;
(3)当a=0时,求整数k的所有值,使方程f(x)=x+2在[k,k+1]上有解.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=,若f(x)在(0,+∞)上单调递增,则实数a的取值范围为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)是连续的偶函数,且当x>0时是单调函数,则满足f(x)=f()的所有x之和为(  )
A.-3B.3C.-8D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数y=f(x)满足:对任意的x1<x2≤-1,[f(x2)-f(x1)](x2-x1)>0恒成立,则f(-2),f(-),f(-1)的大小关系为(  )
A.f(-2)<f(-)<f(-1)
B.f(-2)>f(-)>f(-1)
C.f(-2)>f(-1)>f(-)
D.f(-)>f(-2)>f(-1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

f(x)=x3+log2,则不等式f(m)+f(m2-2)≥0(m∈R)成立的充要条件是________.(注:填写m的取值范围)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ex-ex(x∈R且e为自然对数的底数).
(1)判断函数f(x)的奇偶性与单调性;
(2)是否存在实数t,使不等式f(xt)+f(x2t2)≥0对一切x都成立?若存在,求出t;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数, 若, 则实数的取值范围       .

查看答案和解析>>

同步练习册答案