精英家教网 > 高中数学 > 题目详情
8.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(cosα,sinα)且$\overrightarrow{a}$∥$\overrightarrow{b}$,则tanα=(  )
A.3B.-3C.$\frac{1}{3}$D.$-\frac{1}{3}$

分析 利用向量共线,列出方程,然后求解即可.

解答 解:向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(cosα,sinα)且$\overrightarrow{a}$∥$\overrightarrow{b}$,
可得3cosα=sinα,可得tanα=3.
故选:A.

点评 本题考查向量共线,三角函数化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.定理:若函数y=f(x)的图象关于直线x=a对称,且方程f(x)=0有n个根,则这n个根之和为na(n∈N*).
利用上述定理,求解下列问题:
(1)已知函数g(x)=sin2x+1,x∈[-$\frac{5π}{2}$,4π],设函数y=g(x)的图象关于直线x=a对称,求a的值及方程g(x)=0的所有根之和;
(2)若关于x的方程2x4+2x+2-x-cosx-m2=0在实数集上有唯一的解,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,(2$\overline{a}$$-\overrightarrow{b}$)$•\overrightarrow{b}$=0,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.30°B.120°C.60°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=$\frac{{x}^{2}+a}{x+1}$在x=l处取得极值,则a=(  )
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知正方体ABCD-A1B1C1D1的棱长为1.
(1)求证:A1C1∥平面ABCD;
(2)求:△A1C1A的面积;
(3)求A1C1与平面A1B1BA所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.有5本不同的中文书,4本不同的数学书,3本不同的英语书,每次取一本,不同取法有(  )种.
A.3B.12
C.60D.不同于以上的答案

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比试验.甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在[60,100]区间内(满分100分),并绘制频率分布直方图如图,两个班人数均为60人,成绩80分及以上为优良.

(1)根据以上信息填好下列2×2联表,并判断出有多大的把握认为学生成绩优良与班级有关?
是否优良
班级
优良(人数)非优良(人数)合计
合计
(2)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选2人来作书面发言,求2人都来自甲班的概率.
下面的临界值表供参考:
 P(x2?k) 0.10 0.05 0.010
 k 2.706 3.841 6.635
(以下临界值及公式仅供参考${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知随机变量x服从正态分布N(3,1),且P(2≤x≤4)=0.6828,则P(x>4)=(  )
A.0.1585B.0.1586C.0.1587D.0.1588

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.执行下列程序框图:如果x=5,则运算次数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案