精英家教网 > 高中数学 > 题目详情
如图,正方体ABCD-A1B1C1D1
(1)求证:平面ACC1A1⊥平面A1BD;
(2)求二面角A-A1B-D的余弦值.
考点:与二面角有关的立体几何综合题,平面与平面垂直的判定
专题:空间位置关系与距离,空间角
分析:(1)由AC⊥BD,AA1⊥BD,AC∩AA1,能证明BD⊥平面ACC1A1,从而得到平面ACC1A1⊥平面A1BD.
(2)设正方体的棱长为1,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出二面角A-A1B-D的余弦值.
解答: (1)证明:正方体ABCD-A1B1C1D1中,
∵AC⊥BD,AA1⊥BD,AC∩AA1
∴BD⊥平面ACC1A1
∵BD?平面A1BD,∴平面ACC1A1⊥平面A1BD.
(2)解:设正方体的棱长为1,以D为原点,
DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
则A(1,0,0),A1(1,0,1),
B(1,1,0),D(0,0,0),
DA1
=(1,0,1),
DB
=(1,1,0),
设平面DBA1的法向量
n
=(x,y,z)

n
DA1
=x+z=0
n
DB
=x+y=0
,取x=1,得
n
=(1,-1,-1)

又平面AA1B的法向量为
m
=(1,0,0)

∴cos<
n
m
>=
1
3
=
3
3

∴二面角A-A1B-D的余弦值为
3
3
点评:本题考查平面与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若一束光线从点P(1,0)射出后,经直线x-y+1=0反射后恰好过点Q(2,1),在这一过程中,光线从P到Q所经过的最短路程是(  )
A、2
5
B、2+
2
C、
10
D、2+
10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a,b满足a+b>0,b<0,则a,b,-a,-b的大小关系是(  )
A、a>-b>b>-a
B、a>b>-b>-a
C、a>-b>-a>b
D、a>b>-a>-b

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,PA=AB=2,∠BAD=60°.
(1)求证:BD⊥平面PAC;
(2)求三棱锥C-BPD的高;
(3)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2-8y+12=0,直线l经过点D(-2,0),且斜率为k.
(1)求以线段CD为直径的圆E的方程;
(2)若直线l与圆C相离,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知B,C是两个定点,|BC|=6,且△ABC的周长等于16,求顶点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

请画出函数y=丨x2-2丨的图象,并求单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

在递增等差数列{an}中,前n项和为Sn,且a1a3=5,a1+a3=6,
(1)求数列{an}的通项公式;
(2)若bn=Sn-6an,求数列{bn}的最小值以及相应的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重,大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对入院的50人进行了问卷调查得到了如下的列联表:
患心肺疾病 不患心肺疾病 合计
5
10
合计 50
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为
3
5

(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
临界值表供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+c+b+d).

查看答案和解析>>

同步练习册答案