| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 设$(\frac{2}{5})^{n-1}$=t∈(0,1],an=5($\frac{2}{5}$)2n-2-4($\frac{2}{5}$)n-1(n∈N*),可得an=5t2-4t=$5(t-\frac{2}{5})^{2}$-$\frac{4}{5}$∈$[-\frac{4}{5},1]$,利用二次函数的单调性即可得出.
解答 解:设$(\frac{2}{5})^{n-1}$=t∈(0,1],an=5($\frac{2}{5}$)2n-2-4($\frac{2}{5}$)n-1(n∈N*),
∴an=5t2-4t=$5(t-\frac{2}{5})^{2}$-$\frac{4}{5}$,
∴an∈$[-\frac{4}{5},1]$,
当且仅当n=1时,t=1,此时an取得最大值;同理n=2时,an取得最小值.
∴q-p=2-1=1,
故选:A.
点评 本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$,1 | B. | $\sqrt{3}$,-1 | C. | -$\sqrt{3}$,1 | D. | -$\sqrt{3}$,-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=tanx | B. | f(x)=cos2x | C. | f(x)=|sin2x| | D. | f(x)=|sinx| |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3+2$\sqrt{2}$ | B. | 4$\sqrt{2}$ | C. | 6 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com