精英家教网 > 高中数学 > 题目详情
2
1
x2-2x-3
x
dx
=
 
考点:定积分
专题:导数的综合应用
分析:利用定积分的运算法则,将所求化为和差的定积分,等于定积分的和与差.
解答: 解:原式=
2
1
(
x-2-
3
x
)dx=(
1
2
x2-2x-3lnx)|
 
2
1
=-
1
2
-3ln2;
故答案为:-
1
2
-3ln2.
点评:本题考查了定积分的计算;关键是利用定积分的运算法则解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,a1=3,an=
an-1+2
,bn=an-2,n=2,3,
(Ⅰ)求a2,a3,判断数列{an}的单调性并证明;
(Ⅱ)求证:|an-2|<
1
4
|an-1-2|(n=2,3,…);
(Ⅲ)是否存在常数M,对任意n≥2,有b2b3…bn≤M?若存在,求出M的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

求和:4n+3•4n-1+32•4n-2+…+3n-1•4+3n(n∈N*)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}为等差数列,a2+a8=12,a4=5,令bn=a2n,判断数列{bn}是否为等差数列,若是,求其公差.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx+
π
6
)(ω>0,x∈R)的最小正周期为π.
(1)求ω的值;
(2)若f(α)=
2
3
,α∈(0,
π
8
),求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,⊙O的直径为AB,AD平分∠BAC,AD交⊙O于点D,BC∥DE,且DE交AC的延长线于点E,OE交AD于点F.
(Ⅰ)求证:DE是⊙O的切线;
(Ⅱ)若AB=10,AC=6求DF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

y=x0.3的导数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(6,-4),B(4,8),求线段AB的垂直平分线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x|,g(x)=-|x-4|+m
(Ⅰ)解关于x的不等式g[f(x)]+2-m>0;
(Ⅱ)若函数f(x)的图象恒在函数g(x)图象的上方,求实数m的取值范围.

查看答案和解析>>

同步练习册答案