精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C的对边分别为a,b,c且有
cosA
cosC
=-
2a
3b+2c

(1)求cosA的值.
(2)若a=
5
,求b+c的最大值.
考点:正弦定理,余弦定理
专题:解三角形
分析:(1)由条件利用正弦定理、诱导公式,化简求得cosA的值.
(2)由条件利用余弦定理化简可得 (b+c)2=
2
3
bc
+5,再利用基本不等式求得 (b+c)2≤6,可得b+c的最大值.
解答: 解:(1)在△ABC中,∵
cosA
cosC
=-
2a
3b+2c
,利用正弦定理可得
cosA
cosC
=
2sinA
3sinB+2sinC

化简可得3sinBcosA=-2sin(A+C)=-2sinB,∴cosA=-
2
3

(2)∵a=
5
,由余弦定理可得 cosA=-
2
3
=
b2+c2-a2
2bc
=
(b+c)2-5-2bc
2bc

∴(b+c)2=
2
3
bc
+5≤
2
3
(b+c)2+5=
(b+c)2
6
+5,∴(b+c)2≤6,b+c≤
6
,当且仅当b=c时取等号.
可得b+c的最大值为
6
点评:本题主要考查正弦定理和余弦定理,基本不等式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1底面边长均为
2
,侧棱长为1,点D在棱A1C1上.
(Ⅰ)若D为A1C1的中点,求证:直线BC1∥平面AB1D;
(Ⅱ)设二面角A1-AB1-D的平面角为θ,
A1D
A1C1
(0<λ<1),试探究当λ为何值时,能使tanθ=2?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,A、B分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的上、下顶点,椭圆C的焦点F与抛物线y2=4
2
x的焦点重合,且S△ABF=
2

(1)求椭圆的方程;
(2)若不过点A的直线l与椭圆相交于P、Q两点,且AP⊥AQ,求证:直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
3
(a+1)x2+3ax.
(1)若函数f(x)在x=1处取得极值,求函数f(x)的解析式;
(2)若函数f(x)在(-∞,+∞)不单调,求实数a的取值范围;
(3)在(1)的条件下,判断过点A(1,-
5
2
)可作曲线y=f(x)多少条切线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在[-1,1]上的奇函数,当x∈(0,1]时的图象如图所示.
(1)画出函数在[-1,0)上的图象;
(2)求函数y=f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校研究性学习小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程).被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组:[50,100),[100,150),[150,200),[200,250),[250,300],绘制成如图所示的频率分布直方图.
(1)求直方图中x的值;
(2)求续驶里程在[200,300]的车辆数;
(3)若从续驶里程在[200,300]的车辆中随机抽取2辆车,记ξ表示续驶里程在[250,300)的车辆数,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的极坐标方程为ρ2=
12
3cos2θ+4sin2θ
,点F1,F2为其左右焦点.以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=2+
2
2
t
y=
2
2
t
(t为参数,t∈R).
(1)求直线l的普通方程和椭圆C的直角坐标方程;
(2)求点F1,F2到直线l的距离之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

某班主任对全班50名学生进行了作业量多少的调查,数据如下表:
认为作业多认为作业不多总数
喜欢玩电脑游戏201030
不喜欢玩电脑游戏51520
总数252550
(1)如果校长随机地问这个班的一名学生,下面事件发生的概率是多少?
①认为作业不多;
②喜欢玩电脑游戏并认为作业多;
(2)在认为作业多的学生中采用分层抽样的方法随机抽取5名,喜欢电脑游戏的应抽取几名?
(3)在(2)中抽取的5名中再任取2名,求恰有1名不喜欢电脑游戏的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C所对的边分别为a,b,c,且a=3,b=2,cosB=
7
9

(Ⅰ)求c边长;
(Ⅱ)求sinA的值.

查看答案和解析>>

同步练习册答案