分析 由题意先求f(2)=-22+2=-2,再求f(f(2))=f(-2)即可;
解f(x)=0得x=-2,x=0或x=1;故f(f(x))=0可化为f(x)=-2,f(x)=0或f(x)=1;从而确定函数零点的个数.
解答 解:∵f(2)=-22+2=-2,
∴f(f(2))=f(-2)=|-2+1|-1=0;
当x<0时,由f(x)=|x+1|-1=0解得,
x=-2;
当x≥0时,由f(x)=-x2+x=0解得,x=0或x=1;
则f(f(x))=0可化为
f(x)=-2,f(x)=0或f(x)=1;
由f(x)=-2得,
|x+1|-1=-2或-x2+x=-2,
解得,x=2;
由f(x)=0解得,x=-2,x=0或x=1;
由f(x)=1得,|x+1|-1=1或-x2+x=1;
解得,x=-3;
综上所述,函数y=f(f(x))的零点个数为5;
故答案为:0,5.
点评 本题考查了分段函数的应用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{3}{2}$ | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com