精英家教网 > 高中数学 > 题目详情
13.设函数f(x)=(2x+a)n,其中n=6${∫}_{0}^{\frac{π}{2}}$cosxdx,$\frac{f′(0)}{f(0)}$=-12,则f(x)的展开式中x4的系数是(  )
A.-240B.240C.-60D.60

分析 利用定积分基本定理可求得n,利用$\frac{f′(0)}{f(0)}$=-12,求出a,再利用二项式定理可求得f(x)展开式中x4的系数.

解答 解:∵n=6${∫}_{0}^{\frac{π}{2}}$cosxdx=6sinx${|}_{0}^{\frac{π}{2}}$=6,
∴f(x)=(2x+a)6
∴f(0)=a6,f′(0)=12a5
∵$\frac{f′(0)}{f(0)}$=-12,
∴a=-1
∴f(x)=(2x-1)6展开式中x4的系数为:${C}_{6}^{2}$•24•(-1)2=15×16=240.
故选:B.

点评 本题考查二项式定理,考查定积分,求得n是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.抛物线C:y2=4x的准线l的方程是x=-1;以C的焦点为圆心,且与直线l相切的圆的方程是(x-1)2+y2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.阅读如图所示的框图,运行相应的程序,则输出S的值为(  )
A.-1008B.-1007C.1007D.1008

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点A(3,4),∠AOx=α,将线段OA绕点O逆时针旋转$\frac{π}{3}$后得OB,设∠BOx=β.
(1)求sinβ,cosβ的值;
(2)求B点的坐标(画图)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=cos2x+4cosx的值域为[-3,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设O为坐标原点,点P的坐标为(2,n),已知线段OP的中心落在直线l1:2x+y-1=0上,求过点P且与直线l1垂直的直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=ax3+bx2+cx+d(a≠0)是R上的函数,其图象交x轴于A、B、C三点,且点B的坐标为(2,0),若函数f(x)在[-2,0]和[5,7]上均为单调函数,且f(x)在[-2,0]和[5,7]上的单调性相同,在[0,3]和[5,7]上的单调性相反.
(1)求实数c的值,并用a、b表示d;
(2)证明:曲线y=f(x)上不存在点M,使曲线在点M处的切线与直线x+3by+a=0垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若直线Ax+By+C=0经过两点(1,1),(2,3),求$\frac{A+B+C}{A-B+C}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=2x+x,g(x)=log2x+x,h(x)=lnx+x,若f(a)=g(b)=h(c)=0,则(  )
A.c<b<aB.b<c<aC.a<b<cD.a<c<b

查看答案和解析>>

同步练习册答案