精英家教网 > 高中数学 > 题目详情
(1)计算[(1+2i)•i100+(
1-i
1+i
5]2-(
1+i
2
20
(2)已知复数z1满足(1+i)z1=-1+5i,z2=a-2-i,其中i为虚数单位,a∈R,若|z1-
.
z2
|<|z1|,求a的取值范围.
考点:复数代数形式的混合运算
专题:数系的扩充和复数
分析:(1)利用复数的代数形式的乘除运算法则求解.
(2)由题意得 z1=
-1+5i
1+i
=2+3i,于是|z1-
.
z2
|
=|4-a+2i|=
(4-a)2+4
,由此能求出a的取值范围.
解答: 解:(1)[(1+2i)•i100+(
1-i
1+i
5]2-(
1+i
2
20
=[(1+2i)•1+(-i)5]2-i10
=(1+i)2-i10
=1+2i.
(2)由题意得 z1=
-1+5i
1+i
=2+3i,
于是|z1-
.
z2
|
=|4-a+2i|=
(4-a)2+4

|z1|=
13

(4-a)2+4
13

得a2-8a+7<0,解得1<a<7.
点评:本题考查复数的代数形式的乘除运算,考查实数的取值范围的求法,是中档题,解题时要注意复数的代数形式的乘除运算法则的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(sinx,
3
sinx),
n
=(sinx,-cosx),设函数f(x)=
m
n

(Ⅰ)求函数f(x)的表达式及它的值域;   
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,A为锐角,若f(A)+
1
2
+sin(2A-
π
6
)=
3
2
,b+c=7,△ABC的面积为2
3
,求边a的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在海岸A处,发现北偏东45°方向,距A为(
3
-1)km的B处有一艘走私船,在A处北偏西75°方向,距A为2 km的C处的缉私船奉命以10
3
km/h的速度追截走私船,此时走私船正以10 km/h的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船,并求出所需要的时间.(
6
=2.449)

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=
e1
+2
e2
b
=-3
e1
+2
e2
,其中
e1
e2
e1
e1
=
e2
e2
=1
(1)计算|
a
+
b
|的值;
(2)当k为何值时k
a
+
b
a
-3
b
互相垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinx,-1)
b
=(
3
cosx,-
1
2
),函数f(x)=(
a
+
b
)•
a
-2
(1)求函数f(x)的最小正周期;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,a=2
3
,且f(A)=1,求A和△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=2,计算
2cos(
π
2
+α)-cos(π-α)
sin(
π
2
-α)-3sin(π+α)

sin3α-cosα
sin3α+2cosα

查看答案和解析>>

科目:高中数学 来源: 题型:

根据两类不同事物之间具有类似(或一致)性,推测其中一类事物具有与另一类事物类似(或相同)的性质的推理,叫做类比推理.请用类比推理完成下表:
平面空间
三角形的两边之和大于第三边四面体的任意三个面的面积之和大于第四个面的面积
三角形的面积等于任意一边的长度与这个边上高的乘积的二分之一四面体的体积等于任意底面的面积与这个底面上的高的乘积的三分之一
三角形的面积等于其内切圆的半径与三角形周长乘积的二分之一

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求函数f(x)=lg(2cosx-1)+
49-x2
的定义域
(2)若cosθ=
2
4
,求
sin(θ-5π)•cos(
π
2
-θ)•cos(8π-θ)
sin(θ-
2
)•sin(-θ-4π)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alog2x-blog3x+2,若f(
1
2014
)=4,则f(2 014)的值为
 

查看答案和解析>>

同步练习册答案